Bulletin of Volcanology

, 80:39 | Cite as

Groundwater drainage from fissures as a source for lahars

  • P. J. JohnsonEmail author
  • G. A. Valentine
  • P. H. Stauffer
  • C. S. Lowry
  • I. Sonder
  • B. A. Pulgarín
  • C. C. Santacoloma
  • A. Agudelo
Research Article


One mechanism for generating lahars at volcanoes experiencing unrest is the disruption of internal aquifers. These disruptions can trigger releases of large quantities of groundwater. An example of such aquifer disruption occurred at Nevado del Huila Volcano, Colombia, during February and April 2007 when large fractures formed across the summit area of the volcano and lahars were emitted from them. Previous work interpreted that lahar volumes could not be accounted for by melted glacial snow or precipitation, and by elimination suggested that the primary water source was groundwater. Conceptual models have been developed for perched, confined aquifers that have been heated and pressurized by magma intrusions, followed by sudden pressure release and water emission during fracture formation. We consider an alternative end member wherein water release from large fissures at volcanoes is driven by simple gravity drainage. We apply numerical modeling to quantify water discharge from the porous medium surrounding a fissure with a low-elevation free exit. If a long fracture with high vertical extent (on the order of hundreds of meters) intersects a highly connected saturated porous medium, large volumes (on order 103 m3/m of crack length) of water may be released within tens of minutes. The drainage rates from the model may be adequate to account for the Nevado del Huila events if the medium surrounding the crack contains a large volume of water and has high horizontal permeability. This simple but poorly understood mechanism can present a hazard on its own or compound other processes releasing water from volcanoes.


Lahar Modeling Nevado del Huila Groundwater 



The authors thank the scientists and staff of the Servicio Geológico Colombiano for their support and assistance with sharing and evaluating data from the Huila eruptions. Collaboration between the University at Buffalo and Servicio was funded by the VHub project. This work was also improved by discussions with Dr. Jessica L. Ball at USGS-Menlo Park and Dr. Benjamin van Wyk de Vries at the Universit Clermont Auvergne in Clermont-Ferrand, France, as well as by comments from two anonymous reviewers.


  1. Aizawa K, Ogawa Y, Ishido T (2009) Groundwater flow and hydrothermal systems within volcanic edifices: delineation by electric self-potential and magnetotellurics. J Geophys Res 114:B01208CrossRefGoogle Scholar
  2. Arnold BA, Kuzio SP, Robinson BA (2003) Radionuclide transport simulation and uncertainty analyses with the saturated-zone site-scale model at Yucca Mountain, Nevada. J Contam Hydrol 62-63:401–419CrossRefGoogle Scholar
  3. Ball JL, Stauffer PH, Calder ES, Valentine GA (2015) The hydrothermal alteration of cooling lava domes. Bull Volcanol 77(12):1–16CrossRefGoogle Scholar
  4. Bartetzko A, Klitzsch N, Iturrino G, Kaufhold S, Arnold J (2006) Electrical properties of hydrothermally altered dacite from the PACMANUS hydrothermal field (ODP Leg 193). J Volcanol Geotherm Res 152(1–2):109–120. CrossRefGoogle Scholar
  5. Bedrosian PA, Unsworth MJ, Johnston MJS (2007) Hydrothermal circulation at Mount St. Helens determined by self-potential measurements. J Volcanol Geotherm Res 160:137–146. CrossRefGoogle Scholar
  6. Bernard ML, Zamora M, Géraud Y, Boudon G (2007) Transport properties of pyroclastic rocks from Montagne Pelée volcano (Martinique, Lesser Antilles). J Geophys Res 112(B5).
  7. Birdsell KH, Wolfsberg AV, Hollis D, Cherry TA, Bower KM (2000) Groundwater flow and radionuclide transport calculations for a performance assessment of a low-level waste site. J Contam Hydrol 46:99–129CrossRefGoogle Scholar
  8. Breien H, De Blasio FV, Elverhøi A, Høeg K (2008) Erosion and morphology of a debris flow caused by a glacial lake outburst flood, western Norway. Landslides 3(5):271–280. CrossRefGoogle Scholar
  9. Butler JJ (1997) The design, performance, and analysis of slug tests. CRC Press, Boca RatonGoogle Scholar
  10. Calderón Y, Avila G, Ojeda J (1997) Estudio de amenazas y zonificación geológica de la Cuenta Río Páez, Cauca (Study of risk and geological zones of the Rio Paez basin, Cauca), 2nd Pan-American Symposium on Landslides, 2nd COBRAE, Rio de JaneiroGoogle Scholar
  11. Calvari S, Tanner LH, Groppelli G (1998) Debris-avalanche deposits of the Milo lahar sequence and the opening of the Valle del Bove on Etna volcano (Italy). J Volcanol Geotherm Res 87(1–4):193–209. CrossRefGoogle Scholar
  12. Christiansen RL, Peterson DW (1981) Chronology of the 1980 eruptive activity. In: Lipman PW, Mullineaux DR (eds) The 1980 Eruptions of Mount St. Helens, Washington. US Geological Survey Professional Paper 1250Google Scholar
  13. Coombs ML, Neal CA, Wessels RL, McGimsey RG (2006) Geothermal disruption of summit glaciers at Mount Spurr Volcano, 2004–6: an unusual manifestation of volcanic unrest. US Geological Survey Professional Paper 1732-B, pp 1–33Google Scholar
  14. Corey AT (1954) The interrelation between gas and oil relative permeabilities. Prod Month 19:38–41Google Scholar
  15. Correa AM, Pulgarín BA (2002) Morfología, estratigrafía, y petrología general del complejo volcánico Nevado del Huila (CVNH) (Énfasis en el flanco occidental). Republica de Colombia Ministerio de Minas y EnergíaGoogle Scholar
  16. Dash ZV, Robinson BA, Pawar RJ, Chu S (2015) (rev. 3). Software validation report for the FEHM application version 3.1-3.X. Los Alamos National Laboratory 10086-VTP-2.21-00, LA-UR-15-27776Google Scholar
  17. Delcamp A, Roberti G, van Wyk de Vries B (2016) Water in volcanoes: evolution, storage and rapid release during landslides. Bull Volcanol 78:87. CrossRefGoogle Scholar
  18. Fagents SA, Baloga SM (2006) Toward a model for the bulking and debulking of lahars. J Geophys Res Solid Earth 111(B10).
  19. Farquharson J, Heap MJ, Varley NR, Baud P, Reuschlé T (2015) Permeability and porosity relationships of edifice-forming andesites: a combined field and laboratory study. J Volcanol Geotherm Res 297:52–68CrossRefGoogle Scholar
  20. Finn CA, Deszcz-Pan M, Anderson ED, John DA (2007) Three-dimensional geophysical mapping of rock alteration and water content at Mount Adams, Washington: implications for lahar hazards. J Geophys Res Solid Earth 112(B10).
  21. Fisher AT, Von Herzen R (2005) Models of hydrothermal circulation within 106 Ma seafloor: constraints on the vigor of fluid circulation and crustal properties below the Madeira Abyssal Plain. Geochem Geophys Geosyst (G3) 6(11).
  22. Graettinger AH, Manville V, Briggs RM (2010) Depositional record of historic lahars in the upper Whangaehu Valley, Mt. Ruapehu, New Zealand: implications for trigger mechanisms, flow dynamics and lahar hazards. Bull Volcanol 72(3):279–296. CrossRefGoogle Scholar
  23. Haar L, Gallagher JS, Kell GS (1984) NBS/NRC steam, tables. Hemisphere, New YorkGoogle Scholar
  24. Hantush MS, Jacob CE (1955) Non-steady radial flow in an infinite leaky aquifer. Am Geophys Union Trans 36(1):95–100CrossRefGoogle Scholar
  25. Heap MJ, Kennedy BM (2016) Exploring the scale-dependent permeability of fractured andesite. Earth Planet Sci Lett 447:139–150CrossRefGoogle Scholar
  26. Heap MJ, Wadsworth FB (2016) Closing an open system: pore pressure changes in permeable edifice rock at high strain rates. J Volcanol Geotherm Res 315:40–50. CrossRefGoogle Scholar
  27. Heap MJ, Kennedy BM, Furquharson JI, Ashworth J, Mayer K, Letham-Brake M, Reuschle T, Gilg A, Scheu B, Lavallée Y, Siratovich P, Cole J, Jolly A, Baud P, Dingwell DB (2017) A multidisciplinary approach to quantify the permeability of the Whakaari/White Island volcanic hydrothermal system (Taupo Volcanic Zone, New Zealand). J Volcanol Geotherm Res 332:88–108CrossRefGoogle Scholar
  28. Hemmings B, Whitaker FF, Gottsmann J, Hawes M (2016) Non-eruptive ice melt driven by internal heat at glaciated stratovolcanoes. J Volcanol Geotherm Res 327:385–397. CrossRefGoogle Scholar
  29. Huggel C, Ceballos JL, Pulgarín B, Ramírez J, Thouret JC (2007) Review and reassessment of hazards owing to volcano-glacier interactions in Colombia. Ann Glaciol 45:128–136. CrossRefGoogle Scholar
  30. Hurwitz S, Kipp KL, Ingebritsen SE, Reid ME (2003) Groundwater flow, heat transport, and water table position within volcanic edifices: implications for volcanic processes in the Cascade Range. J Geophys Res 108(B12):2557CrossRefGoogle Scholar
  31. Hvorslev MJ (1951) Time lag and soil permeability in ground-water observations, Bull. No. 36, Waterways exper Sta Corps Of Engineers, US Army, Vicksburg, MississippiGoogle Scholar
  32. Jordan AB, Boukhalfa H, Caporuscio FA, Robinson BA, Stauffer PH (2015) Hydrous mineral dehydration around heat-generating nuclear waste in bedded salt formations. Environ Sci Technol 5:1–13. Google Scholar
  33. Kelkar S, Tucci P, Srinivasan G, Roback R, Robinson B, Duke C, Rehfeldt K (2013) Breakthrough of radioactive plumes in saturated volcanic rock: implications from the Yucca Mountain Site. Geofluids 13(3):273–282. CrossRefGoogle Scholar
  34. Major JJ, Newhall CG (1989) Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods. Bull Volcanol 52:1–27. CrossRefGoogle Scholar
  35. Monsalve ML, Pulgarín BA, Mojica J, Santacoloma CC, Cardona CE (2010) Emisiones de ceniza asociados a la actividad del Volcán Nevado del Huila (Colombia), 2007–2009. XIII Congreso Colombiano de GeologíaGoogle Scholar
  36. Newhall CG, Albano SE, Matsumoto N, Sandoval T (2001) Roles of groundwater in volcanic unrest. J Geol Soc Philippines 56(3–4):69–84Google Scholar
  37. Pierson TC, Janda RJ, Thouret JC, Borrero CA (1990) Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. J Volcanol Geotherm Res 41(1–4):17–66. CrossRefGoogle Scholar
  38. Pulgarín B, Jordan E, Linder W (2005) Aspectos geológicos y cambio glaciar del Volcán Nevado del Huila entre 1.961 y 1.995. Proceedings, Conferencia cambio climático, Bogotá, ColombiaGoogle Scholar
  39. Pulgarín B, Cardona CE, Santacoloma CC, Agudelo A, Calvache ML, Monsalve ML (2007) Erupciones del Volcán Nevado del Huila, en febrero y abril de 2007, y los cambios en su masa glaciar (Eruptions of the Nevado del Huila Volcano in February and April 2007 and the changes in its glacial mass). INGEOMINAS Boletín geológico 42(1–2):109–127Google Scholar
  40. Pulgarín B, Cardona C, Agudelo A, Santacoloma C, Monsalve M, Calvache M, Murcia H, Ibánez D, García J, Murcia C, Cuellar M, Ordóñez M, Medina E, Balanta R, Calderón Y, Leiva O (2009) Erupciones históricas recientes del Volcán Nevado del Huila, cambios morfológicos y lahares asociados. XII Congreso Colombiano de GeologíaGoogle Scholar
  41. Reid ME (2004) Massive collapse of volcano edifices triggered by hydrothermal pressurization. Geology 32:373–376CrossRefGoogle Scholar
  42. Santacoloma C, Cardona CE, White R, McCausland W, Trujillo N, Bolaños R, Manzo O, Narváez A (2009) Aspectos sísmicos de las erupciones freáticas y freatomagmática del Volcán Nevado del Huila (Colombia). XII Congreso Colombiano de GeologíaGoogle Scholar
  43. Schneider D, Delgado Granados H, Huggel C, Kaab A (2008) Assessing lahars from ice-capped volcanoes using ASTER satellite data, the SRTM DTM and two different flow models: case study on Iztaccihuatl (central Mexico). Nat Hazards Earth Syst Sci 8(3):559–571CrossRefGoogle Scholar
  44. Scott KM, Vallance JW, Kerle N, Devoli G (2005) Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: occurrence, bulking and transformation. Earth Surf Proc Landforms 30:59–75. CrossRefGoogle Scholar
  45. Spinelli GA, Fisher AT (2004) Hydrothermal circulation within rough basement on the Juan de Fuca Ridge flank. Geochem Geophys Geosys 5(2):Q02001. CrossRefGoogle Scholar
  46. Stauffer PH (2006) Flux flummoxed: a proposal for consistent usage. Ground Water 44(2):125–128CrossRefGoogle Scholar
  47. Stauffer PH, Auer LH, Rosenberg ND (1997) Compressible gas in porous media: a finite amplitude analysis of natural convection. Int J Heat Mass Transf 40(7):1585–1589CrossRefGoogle Scholar
  48. Stauffer PH, Birdsell KH, Witkowski MS, Hopkins JK (2005) Vadose zone transport of 1,1,1-trichloroethane. Vadose Zone J 4(3):760–773CrossRefGoogle Scholar
  49. Tenma N, Yamaguchi T, Zyvoloski G (2008) The Hijiori hot dry rock test site, Japan: evaluation and optimization of heat extraction from a two-layered reservoir. Geothermics 37:19–52. CrossRefGoogle Scholar
  50. Theis CV (1935) The relation between the lower of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Am Geophys Union Trans 16:519–524CrossRefGoogle Scholar
  51. Umball JV, Rodolfo KS (1996) The 1991 lahars of southwestern Mount Pinatubo and evolution of the lahar-dammed Mapanuepe Lake. In: Newhall CG and Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. Philippine Institute of Volcanology and Seismology and University of Washington Press, pp 951–970Google Scholar
  52. Vallance JW, Scott KM (1997) The Osceola mudflow from Mount Rainier: sedimentology and hazard implications of a huge clay-rich debris flow. GSA Bull 109(2):143–163.<0143:TOMFMR>2.3.CO;2 CrossRefGoogle Scholar
  53. Van Genuchten MT (1980) A closed form equation for predicting hydraulic conductivity of unsaturated soils. J Soil Sci Soc Am 44:892–898CrossRefGoogle Scholar
  54. Watanabe T, Shimizu Y, Noguchi S, Nakada S (2008) Permeability measurements on rock samples from Unzen Scientific Drilling Project Drill Hole 4 (USDP-4). J Volcanol Geotherm Res 175(1–2):82–90. CrossRefGoogle Scholar
  55. Waythomas CF, Pierson TC, Major JJ, Scott WE (2013) Voluminous ice-rich and water-rich lahars generated during the 2009 eruption of Redoubt Volcano, Alaska. J Volcanol Geotherm Res 259:389–413. CrossRefGoogle Scholar
  56. Winslow DM, Fisher AT, Stauffer PH, Gable CW, Zyvoloski GA (2016) Three-dimensional modeling of outcrop-to-outcrop hydrothermal circulation on the eastern flank of the Juan de Fuca Ridge. J Geophys Res Solid Earth 121(3):1365–1382. CrossRefGoogle Scholar
  57. Wolfe EW, Hoblitt RP (1996) Overview of the eruptions. In: Newhall CG and Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. Philippine Institute of Volcanology and Seismology and University of Washington Press, pp 3–20Google Scholar
  58. Worni R, Huggel C, Stoffel M, Pulgarín B (2012) Challenges of modeling current very large lahars at Nevado del Huila Volcano, Colombia. Bull Volcanol 74:309–324. CrossRefGoogle Scholar
  59. Yamaguchi T, Kuriyagawa M, Sato Y, Oikawa Y, Kobayashi H, Matsunaga I, Zyvoloski G (1991) Heat extraction test from hot dry rock and reservoir modeling. J Geotherm Res Soc Japan 13:73–93Google Scholar
  60. Zyvoloski GA, Robinson BA, Dash ZV, Kelkar S, Viswanathan HS, Pawar RJ, Stauffer PH, Miller TA, Chu SP (2012) Software users manual (UM) for the FEHM application version 3.1-3.X. Los Alamos Nat Lab Rep, LA-UR-12-24493Google Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Department of GeologyUniversity at Buffalo (SUNY)AmherstUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA
  3. 3.Servicio Geológico ColombianoPopayánColombia

Personalised recommendations