Advertisement

Bulletin of Volcanology

, 80:38 | Cite as

Geochemical and textural constraints on degassing processes in sub-Plinian eruptions: case-study of the Greenish Pumice eruption of Mount Somma-Vesuvius

  • G. Zdanowicz
  • G. Boudon
  • H. Balcone-Boissard
  • R. Cioni
  • F. Mundula
  • G. Orsi
  • L. Civetta
  • P. Agrinier
Research Article

Abstract

Plinian eruptions are characterized by high intensity and an overall steady character, and result in a stable convective column. The main processes controlling the dynamics of such steady and stable plume systems have been extensively investigated. Conversely, sub-Plinian eruptions are unsteady, as recorded by the large variability of the products and deposits. Our knowledge of the processes creating this unsteadiness on various timescales remains limited, and still requires more observations as well as theoretical and experimental investigation. Here, we focus on the sub-Plinian eruption of the Greenish Pumice (GP, 19,265 ± 105 BP), Mt. Somma-Vesuvius (Italy). On the basis of coupled geochemical and textural analyses of samples from the well-established stratigraphy of the GP deposits, we investigate volatiles (H2O, CO2, F, Cl) to better constrain the unsteady sub-Plinian eruptive style. This allows us to carry out a detailed study of the degassing processes in relation to the eruption dynamics. We find that degassing by open-system processes generally dominates throughout the entire eruption, but alternates with episodes of closed-system degassing. The fluctuating degassing regimes, responsible for the variable magma ascent rate within the conduit, are also responsible for the eruptive column instability. Volatile behavior is well correlated with textural heterogeneities of the eruptive products. Both reflect higher conduit heterogeneity than for Plinian eruptions, where we find a higher horizontal gradient in magma ascent velocity due to a smaller conduit diameter.

Keywords

Mount Somma-Vesuvius Greenish eruption Sub-Plinian Volatiles Conduit Eruptive column instability 

Notes

Acknowledgments

We thank A. Michel for analytical support for water measurements. M. Fialin, F. Couffignal, and N. Rividi are also thanked for help support at the electronic microprobe (Camparis, Paris, France) and O. Boudouma for textural analyses by SEM (Paris, France). A. Carandente and P. Belviso helped in sampling fallout deposits. The INSU-CNRS SIMS national facility is acknowledged for isotopic analyses on MI. The manuscript benefits from the constructive review of L. Gurioli and T. Giachetti and English corrections from the associated editor Steve Self and Fran van Wyk de Vries. We also thank the executive editor, Andrew Harris, for his comments. IPGP contribution number: xxx.

Supplementary material

445_2018_1213_MOESM1_ESM.xlsx (66 kb)
ESM 1 (XLSX 66 kb)
445_2018_1213_MOESM2_ESM.xlsx (17 kb)
ESM 2 (XLSX 17 kb)
445_2018_1213_MOESM3_ESM.docx (813 kb)
ESM 3 (DOCX 812 kb)

References

  1. Alfano F, Bonadonna C, Gurioli L (2012) Insights into eruption dynamics from textural analysis: the case of the May, 2008, Chaitén eruption. Bull Volcanol 74:2095–2108.  https://doi.org/10.1007/s00445-012-0648-3 CrossRefGoogle Scholar
  2. Anderko A, Pitzer KS (1993a) Equation of state representation of phase equilibria and volumetric properties of the system NaCl–H2O above 573 K. Geochim Cosmochim Acta 57:1657–1680CrossRefGoogle Scholar
  3. Anderko A, Pitzer KS (1993b) Phase equilibria and volumetric properties of the systems KCl–H2O and NaCl–KCl–H2O above 573 K: equation of state representation. Geochim Cosmochim Acta 57:4885–4897CrossRefGoogle Scholar
  4. Andronico D, Cioni R (2002) Contrasting styles of Mount Vesuvius activity in the period between the Avellino and Pompeii Plinian eruptions, and some implications for assessment of future hazards. Bull Volcanol 64:372–391.  https://doi.org/10.1007/s00445-002-0215-4 CrossRefGoogle Scholar
  5. Andronico D, Calderoni G, Cioni R, Sbrana A, Sulpizio R, Santacroce R (1995) Geological map of Somma-Vesuvius volcano. Period Miner 64:77–78Google Scholar
  6. Arrighi S, Principe C, Rosi M (2001) Violent Strombolian and sub-Plinian eruptions at Vesuvius during post-1631 activity. Bull Volcanol 63:126–150.  https://doi.org/10.1007/s004450100130 CrossRefGoogle Scholar
  7. Balcone-Boissard H, Villemant B, Boudon G, Michel A (2008) Non-volatile vs volatile behaviors of halogens during the AD 79 Plinian eruption of Mt. Vesuvius. Earth Planet Sci Lett 269:66–79CrossRefGoogle Scholar
  8. Balcone-Boissard H, Villemant B, Boudon G (2010) Behavior of halogens during the degassing of felsic magmas. Geochem Geophys Geosys.  https://doi.org/10.1029/2010GC003028
  9. Balcone-Boissard H, Boudon G, Villemant B (2011) Textural and geochemical constraints on eruptive style of the 79AD eruption at Vesuvius. Bull Volcanol 73(3):279–294.  https://doi.org/10.1007/s00445-010-0409-0 CrossRefGoogle Scholar
  10. Balcone-Boissard H, Boudon G, Ucciani G, Villemant B, Cioni R, Civetta L, Orsi G (2012) Magma degassing and eruption dynamics of the Avellino pumice Plinian eruption of Somma–Vesuvius (Italy). Comparison with the Pompeii eruption. Earth Planet Sci Lett 331–332:257–268.  https://doi.org/10.1016/j.epsl.2012.03.011 CrossRefGoogle Scholar
  11. Balcone-Boissard H, Boudon G, Cioni R, Webster J, Zdanowicz G, Orsi G, Civetta L (2016) Chlorine as a geobarometer tool for alkaline magmas: evidences from a systematic study of the explosive eruptions of Vesuvius. Sci Rep 6:21726.  https://doi.org/10.1038/srep21726 CrossRefGoogle Scholar
  12. Barnes JD, Prather TJ, Cisneros M, Befus K, Gardner JE, Larson TE (2014) Stable chlorine isotope behavior during volcanic degassing of H2O and CO2 at Mono Craters, CA. Bull Volcanol 76:805.  https://doi.org/10.1007/s00445-014-0805-y CrossRefGoogle Scholar
  13. Beerman O, Botcharnikov RE, Nowak M (2015) Partitioning of sulfur and chlorine between aqueous fluid and basaltic melt at 1050°C, 100 and 200 MPa. Chem Geol 418:132–157CrossRefGoogle Scholar
  14. Beermann O (2010) The solubility of sulfur and chlorine in H2O-bearing dacites of Krakatau and basalts of Mt. Etna. Unpub. Ph.D. thesis, Hannover, 109 ppGoogle Scholar
  15. Blower JD, Keating JP, Mader HM, Phillips JC (2001) Inferring volcanic degassing processes from vesicle size distributions. Geophys Res Lett 28:347–350CrossRefGoogle Scholar
  16. Botcharnikov RE, Behrens H, Holtz F, Koepke J, Sato H (2004) Sulfur and chlorine solubility in Mt. Unzen rhyodacite melt at 850 °C and 200 MPa. Chem Geol 213:207–225CrossRefGoogle Scholar
  17. Burgisser A, Degruyter W (2015) Magma ascent and degassing at shallow levels. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) The encyclopedia of volcanoes, 2nd edn, Chapter 11. Academic Press, pp 225–236.  https://doi.org/10.1016/B978-0-12-385938-9.00011-0
  18. Bursik M (1993) Sub-Plinian eruption mechanisms inferred from volatile and clast dispersal data. J Volcanol Geotherm Res 57:47–60CrossRefGoogle Scholar
  19. Caliro S, Chiodini G, Moretti R, Avino R, Granieri D, Russo M, Fiebig J (2007) The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim Cosmochim Acta 71:3040–3055CrossRefGoogle Scholar
  20. Campagnola S, Romano C, Mastin LG, Vona A (2016) Confort 15 model of conduit dynamics: applications to Pantelleria Green Tuff and Etna 122 BC eruptions. Contrib Mineral Petrol 171:1–25.  https://doi.org/10.1007/s00410-016-1265-5 CrossRefGoogle Scholar
  21. Cashman KV, Mangan MT (1994) Physical aspects of magmatic degassing; II, constraints on vesiculation processes from textural studies of eruptive products. Rev Mineral Geochem 30:447–478Google Scholar
  22. Cioni R, Civetta L, Marianelli P, Metrich N, Santacroce R, Sbrana A (1995) Compositional layering and syn-eruptive mixing of a periodically refilled shallow magma chamber: the AD 79 plinian eruption of Vesuvius. J Petrol 36(3):739–776CrossRefGoogle Scholar
  23. Cioni R, Marianelli P, Santacroce R (1998) Thermal and compositional evolution of the shallow chambers of Vesuvius: evidence from pyroxene phenocrysts and melt inclusions. J Geophys Res 103:18.277–18.294CrossRefGoogle Scholar
  24. Cioni R, Santacroce R, Sbrana A (1999a) Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius caldera. Bull Volcanol 60:207–222CrossRefGoogle Scholar
  25. Cioni R, Marianelli P, Santacroce R (1999b) Temperature of Vesuvius magmas. Geology 27:443–446CrossRefGoogle Scholar
  26. Cioni R, Sulpizio R, Garruccio N (2003) Variability of the eruption dynamics during a sub-Plinian event: the Greenish Pumice eruption of Somma-Vesuvius (Italy). J Volcanol Geotherm Res 124:89–114CrossRefGoogle Scholar
  27. Cioni R, Bertagnini A, Santacroce R, Andronico D (2008) Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): towards a new classification scheme. J Volcanol Geotherm Res 178(3):331–346CrossRefGoogle Scholar
  28. Cioni R, Bertagnini A, Andronico D, Cole PD, Mundula F (2011) The 512 AD eruption of Vesuvius: complex dynamics of a small scale subplinian event. Bull Volcanol 73:789–810CrossRefGoogle Scholar
  29. Cioni R, Pistolesi M, Rosi M (2015) Plinian and Subplinian eruptions. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) The Encyclopedia of Volcanoes, 2nd edn, Chapter 29. Academic Press, pp 519–535.  https://doi.org/10.1016/B978-0-12-385938-9.00029-8
  30. Colombier M, Wadsworth FB, Gurioli L, Scheu B, Kueppers U, Di Muro A, Dingwell DB (2017) The evolution of pore connectivity in volcanic rocks. Earth Planet Sci Lett 462:99–109CrossRefGoogle Scholar
  31. Dalou C, Le Loscq C, Mysen B (2015) In situ study of the fractionation of hydrogen isotopes between aluminosilicate melts and coexisting aqueous fluids at high pressure and high temperature—implications for the δD in magmatic processes. Earth Planet Sci Lett 426:158–166CrossRefGoogle Scholar
  32. Danyushevsky LV, McNeill AW, Sobolev AV (2002) Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications. Chem Geol 183:5–24CrossRefGoogle Scholar
  33. Di Matteo V, Carroll MR, Behrens H, Vetere F, Brooker RA (2004) Water solubility in trachytic melts. Chem Geol 213:187–196CrossRefGoogle Scholar
  34. Fanara S, Botcharnikov RE, Palladino DM, Adams F, Buddensieck J, Mulch A, Behrens H (2015) Volatiles in magmas related to the Campanian Ignimbrite eruption: experiments vs. natural findings. Am Mineral 100:2284–2297CrossRefGoogle Scholar
  35. Gaonac’h H, Lovejoy S, Schertzer D (2004) Scaling vesicle distributions and volcanic eruptions. Bull Volcanol 67:350–357CrossRefGoogle Scholar
  36. Gaonac'h H, Lovejoy S, Stix J, Scherzter D (1996) A scaling growth model for bubbles in basaltic lava flows. Earth Planet Sci Lett 139:395–409CrossRefGoogle Scholar
  37. Gardner JE, Thomas RME, Jaupart J, Tait S (1996) Fragmentation of magma during Plinian volcanic eruptions. Bull Volcanol 58:144–162CrossRefGoogle Scholar
  38. Gardner JE, Hilton M, Carroll MR (1999) Experimental constraints on degassing magma: isothermal bubble growth during continuous decompression from high pressure. Earth Planet Sci Lett 168:201–218CrossRefGoogle Scholar
  39. Giachetti T, Gonnermann HM (2013) Water in volcanic pyroclast: rehydration or incomplete degassing? Earth Planet Sci Lett 369–370:317–332CrossRefGoogle Scholar
  40. Giachetti T, Gonnermann HM, Gardner JE, Shea T, Gouldstone A (2015) Discriminating secondary from magmatic water in rhyolitic matrix-glass of volcanic pyroclasts using thermogravimetric analysis. Geochim Cosmochim Acta 148:457–476CrossRefGoogle Scholar
  41. Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134CrossRefGoogle Scholar
  42. Gonnermann HM, Manga M (2007) The fluid mechanics of volcanic eruptions. Ann Rev Fluid Mech 39:321–356CrossRefGoogle Scholar
  43. Gurioli L, Houghton BF, Cashman K, Cioni R (2005) Complex changes in eruption dynamics during the 79AD eruption of Vesuvius. Bull Volcanol 67:144–159CrossRefGoogle Scholar
  44. Gurioli L, Sulpizio R, Cioni R, Sbrana A, Luperini W, Santacroce R, Andronico D (2010) Pyroclastic flow hazard assessment at Somma-Vesuvius based on the geological record. Bull Volcanol 72:1021–1038.  https://doi.org/10.1007/s00445-010-0379-2 CrossRefGoogle Scholar
  45. Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462CrossRefGoogle Scholar
  46. Iacono Marziano G, Schmidt B, Dolfi D (2007) Equilibrium and disequilibrium degassing of a phonolitic melt (Vesuvius AD 79 “white pumice”) simulated by decompression experiments. J Volcanol Geotherm Res 161:151–164CrossRefGoogle Scholar
  47. Jaupart C (1996) Physical models of volcanic eruptions. Chem Geol 128:217–227CrossRefGoogle Scholar
  48. Jaupart C, Allègre C (1991) Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet Sci Lett 102(3–4):413–429CrossRefGoogle Scholar
  49. LeBas MJ, LeMaitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Pet 27:745–750CrossRefGoogle Scholar
  50. Mangan MT, Cashman KV (1996) The structure of basaltic scoria and reticulite and inferences for vesiculation, foam formation, and fragmentation in lava fountains. J Volcanol Geotherm Res 73:1–18CrossRefGoogle Scholar
  51. Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res 109:B11201.  https://doi.org/10.1029/2004JB003155 CrossRefGoogle Scholar
  52. Mastin LG, Ghiorso MS (2000) A numerical program for steady-state flow of magma-gas mixtures through vertical eruptive conduits: report. Vancouver, Wash, USGS/CascadesVolcano Observatory. http://vulcan.wr.usgs.gov/Projects/Mastin/Publications/OFR00209/framework.html
  53. Métrich N, Deloule E (2014) Water content, δD and δ11B tracking in the Vanuatu arc magmas (Aoba Island): insights from olivine-hosted melt inclusions. Lithos 206-207:400–408CrossRefGoogle Scholar
  54. Mundula F (2002) Le eruzioni sub-Pliniane del Somma-Vesuvio: il ruolo della composizione e della dinamica eruttiva nella definizione dei caratteri tessiturali dei prodotti. PhD, Univ. CagliariGoogle Scholar
  55. Mundula F, Cioni R (2006) Bubble growth during subplinian events: the greenish pumice eruption of Somma-Vesuvius (Italy). EGU fall meeting. Geophys Res Abstr 8:05317Google Scholar
  56. Neri A, Aspinall WP, Cioni R, Bertagnini A, Baxter PJ, Zuccaro G (2008) Developing an event tree for probabilistic hazard and risk assessment at Vesuvius. J Volcanol Geotherm Res 178(3):397–415CrossRefGoogle Scholar
  57. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15CrossRefGoogle Scholar
  58. Pyle DM (2015) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton B, McNutt S, Rymer H, Stix J (eds) The Encyclopedia of Volcanoes, 2nd edn, Chapter 13. Academic Press, pp 257–264.  https://doi.org/10.1016/B978-0-12-385938-9.00013-4
  59. Rolandi G, Barrella AM, Borrelli A (1993) The 1631 eruption of Vesuvius. J Volcanol Geotherm Res 58:183–201CrossRefGoogle Scholar
  60. Rolandi G, Petrosino P, McGeehin JP (1998) The interplinian activity at Somma-Vesuvius in the last 3500 years. J Volcanol Geotherm Res 82(1–4):19–52CrossRefGoogle Scholar
  61. Rolandi G, Munno R, Postiglione I (2004) The A.D. 472 eruption of the Somma volcano. J Volcanol Geotherm Res 129:291–319.  https://doi.org/10.1016/S0377-0273(03)00279-8 CrossRefGoogle Scholar
  62. Rosi M, Santacroce R (1983) The A.D. 472 “Pollena” eruption: volcanological and petrological data for this poorly-known, Plinian-type event at Vesuvius. J Volcanol Geotherm Res 17:249–271CrossRefGoogle Scholar
  63. Rosi M, Principe C, Vecci R (1993) The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data. J Volcanol Geotherm Res 58:183–201CrossRefGoogle Scholar
  64. Rust AC, Cahsman KV (2011) Permeability controls on expansion and size distributions of pyroclasts. J Geophys Res Solid Earth.  https://doi.org/10.1029/2011JB008494
  65. Santacroce R, Cioni R, Marianelli P, Sbrana A, Sulpizio R, Zanchetta G, Donahue DJ, Joron JL (2008) Age and whole rock-glass composition of proximal pyroclastics from the major explosive eruptions of Somma–Vesuvius: a review as a tool for distal tephrostratigraphy. J Volcanol Geotherm Res 177:1–18CrossRefGoogle Scholar
  66. Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010a) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geotherm Res 190(3-4):271–289CrossRefGoogle Scholar
  67. Shea T, Gurioli L, Larsen JF, Houghton BF, Hammer JE, Cashman KV (2010b) Linking experimental and natural vesicle textures in Vesuvius 79AD white pumice. J Volcanol Geotherm Res 192:69–84CrossRefGoogle Scholar
  68. Shea T, Gurioli L, Houghton BF, Cioni R, Cashman KV (2011) Column collapse and generation of pyroclastic density currents during the A.D. 79 eruption of Vesuvius: the role of pyroclast density. Geology 39:695–698CrossRefGoogle Scholar
  69. Shea T, Gurioli L, Houghton BF (2012) Transitions between fall phases and pyroclastic density currents during the AD 79 eruption at Vesuvius: building a transient conduit model from the textural and volatile record. Bull Volcanol 74:2363–2381.  https://doi.org/10.1007/s00445-012-0668-z CrossRefGoogle Scholar
  70. Shea T, Hellebrand E, Gurioli L, Tuffen H (2014) Conduit- to localized-scale degassing during Plinian eruptions: insights from major element and volatile (Cl and H2O) analyses within Vesuvius AD 79 pumice. J Petrol 55:315–344.  https://doi.org/10.1093/petrology/egt1069 CrossRefGoogle Scholar
  71. Sieh K, Bursik M (1986) Most recent eruption of the Mono Craters, eastern central California. J Geophys Res 91:12539–12571CrossRefGoogle Scholar
  72. Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas: a review and analysis. J Volcanol Geotherm Res 3:1–37CrossRefGoogle Scholar
  73. Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:3–15CrossRefGoogle Scholar
  74. Spilliaert N, Allard P, Métrich N, Sobolev AV (2006) Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). J Geophys Res 111:B04203.  https://doi.org/10.1029/2005JB003934 CrossRefGoogle Scholar
  75. Sulpizio R, Mele D, Dellino P, La Volpe L (2005) A complex, Subplinian-type eruption from low-viscosity, phonolitic to tephri-phonolitic magma: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy. Bull Volcanol 67:743–767CrossRefGoogle Scholar
  76. Taylor BE (1991) Degassing of obsidian dome rhyolite, Inyo volcanic chain, California. In: Taylor HP, O’Neil JR, Kaplan IR (eds) The Geochemical Society, Spec. Publ. 3. Elsevier, Amsterdam, pp 339–353Google Scholar
  77. Taylor BE, Eichelberger JC, Westrich HR (1983) Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption. Nature 306:541–545CrossRefGoogle Scholar
  78. Toramaru A (2006) BND (bubble number density) decompression rate meter for explosive volcanic eruptions. J Volcanol Geotherm Res 154:303–316CrossRefGoogle Scholar
  79. Villemant B, Boudon G (1998) Transition between dome-forming and Plinian eruptive style: H2O and Cl degassing behavior. Nature 392:65–69CrossRefGoogle Scholar
  80. Villemant B, Boudon G (1999) H2O and halogen (F, Cl, Br) behavior during shallow magma degassing processes. Earth Planet Sci Lett 168:271–286CrossRefGoogle Scholar
  81. Walker GPL (1973) Explosive volcanic eruptions: a new classification scheme. Geol Rundsch 62:431–446CrossRefGoogle Scholar
  82. Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140(1–3):217–240CrossRefGoogle Scholar
  83. Webster JD, DeVivo B (2002) Experimental and modeled solubilities of chlorine in aluminosilicate melts, consequences of magma evolution, and implications for exsolution of hydrous chloride melt at Mt. Somma-Vesuvius. Am Mineral 87:1046–1061CrossRefGoogle Scholar
  84. Webster JD, Sintoni MF, De Vivo B (2009) The partitioning behavior of Cl and S in aqueous fluid- and saline-liquid saturated phonolitic and trachytic melts at 200 MPa. Chem Geol 263:19–36CrossRefGoogle Scholar
  85. Webster JD, Goldoff BA, Sintoni MF, Shimizu N, Vivo D (2014) B C-O-H-S-Cl-F volatile solubilities, partitioning, and mixing in phonolitic-trachytic melts and aqueous-carbonic vapor ± saline liquid at 200 MPa. J Petrol 55:2217–2248CrossRefGoogle Scholar
  86. Webster JD, Vetere F, Botcharnikov RE, Goldoff B, McBirney A, Doherty AL (2015) Experimental and modeled chlorine solubilities in aluminosilicate melts at 1 to 7000 bars and 700 to 1250 °C: applications to magmas of Augustine Volcano, Alaska. Am Mineral 100:522–535CrossRefGoogle Scholar
  87. Whittington A, Richet P, Linard Y, Holtz F (2001) The viscosity of hydrous phonolites and trachytes. J Chem Geol 174:209–223CrossRefGoogle Scholar
  88. Wulf S, Kraml M, Brauer A, Keller J, Negendank JFW (2004) Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quat Int 122:7–30CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institut de Physique du Globe de Paris, Sorbonne Paris CitéUniv. Paris Diderot, CNRSParisFrance
  2. 2.Dipartimento di Scienze della Terra, dell’Ambiente e delle RisorseUniversità degli Studi di Napoli Federico IINaplesItaly
  3. 3.Sorbonne Université, CNRS-INSUInstitut des Sciences de la Terre ParisParisFrance
  4. 4.Dip. to Scienze della TerraUniversita’ degli Studi di FirenzeFlorenceItaly
  5. 5.Dipartimento di Scienze Chimiche e GeologicheUniversità di CagliariCagliariItaly
  6. 6.Dipartimento di Fisica “E. R. Caianiello”Università degli Studi di SalernoSalernoItaly
  7. 7.Istituto Nazionale di Geofisica e VulcanologiaSezione di PalermoPalermoItaly

Personalised recommendations