Bulletin of Volcanology

, 80:34 | Cite as

The anatomy of a pyroclastic density current: the 10 July 2015 event at Volcán de Colima (Mexico)

  • L. Capra
  • R. Sulpizio
  • V. H. Márquez-Ramirez
  • V. Coviello
  • D. M. Doronzo
  • R. Arambula-Mendoza
  • S. Cruz
Research Article


Pyroclastic density currents (PDCs) represent one of the most dangerous phenomena occurring in explosive volcanic eruptions, and any advance in the physical understanding of their transport and sedimentation processes can contribute to improving their hazard assessment. The 10–11 July 2015 eruption at Volcán de Colima provided a unique opportunity to better understand the internal behaviour of PDCs based on seismic monitoring data. On 10 July 2015, the summit dome collapsed, producing concentrated PDCs that filled the main channel of the Montegrande ravine. A lahar monitoring station installed 6 km from the volcano summit recorded a PDC before being completely destroyed. Real-time data acquisition from a camcorder and a geophone that were part of the station, along with field observations and grain-size data of the pyroclastic deposits, are used here to interpret the internal flow structure and time-variant transport dynamics of low-volume, valley-confined concentrated PDCs. The PDC that reached the monitoring station moved at a velocity of ~ 7 m/s and filled a 12-m-deep channel. The outcrops show massive, block-and-ash flow deposits with trains of coarse clasts in the middle and towards the top of the depositional units. The seismic record gathered with the geophone was analysed for the time window when the flow travelled past the sensor. The geophone record was also compared with the recordings of a broadband seismic station located nearby. Two main frequency ranges were recognised which could be correlated with the basal frictional forces exerted by the flow on the channel bed (10–20 Hz) and a collisional regime (20–40 Hz) interpreted to be associated with a clast segregation process (i.e. kinematic squeezing). This latter regime promoted the upward migration of large blocks, which subsequently deviated towards the margin of the flow where they interacted with the sidewall of the main channel. The energy calculated for both seismic components shows that the collisional regime represents 30% of the total energy including an important sidewall-stress component. These results, gathered directly from a moving flow, contribute to unravelling the internal behaviour of concentrated PDCs providing information on energy partitioning and particle-particle interactions. This confirms previous assumptions inferred from field observations, and tested by analogue or numerical modelling. The nature of the contact between grains is still poorly documented in natural PDCs, and there is still much uncertainty and discussion about dominant forces in such currents. Data reported here may thus be useful to better constrain the physics of low-volume, valley-confined concentrated PDCs and our findings need to be considered in theoretical models. In parallel, this study shows how geophones can provide a cheap alternative for PDC detection.


Volcán de Colima Pyroclastic density currents Geophone Energy partitioning Particle-particle interaction 



The Montegrande and La Lumbre monitoring sites are managed by L. Capra in collaboration with G. Reyes at the RESCO seismological network of Volcán Universidad de Colima and the Centro Nacional de Prevención de Desastres (CENAPRED). This manuscript benefited from the constructive reviews of S. Charbonnier, an anonymous reviewer. G. Lube as associate editor and A. Harris as executive editor have made a remarkable contribution to make this paper more readable and attractive.

Funding information

This work was supported by the PAPIIT-DGAPA IN105116 project granted to L. Capra. V. Coviello is grateful for his DGAPA-UNAM postdoctoral fellowship, and D. Doronzo for his Juan de la Cierva contract (JdC 2015) – MINECO. The SPOT image was obtained through a collaborative agreement between the UNAM and the Agrifood-Fishery Mexican Service (SIAP) - ERMEX, under the license of “Airbus Defense & Space”.

Supplementary material

445_2018_1206_MOESM1_ESM.pdf (155 kb)
ESM 1 (PDF 155 kb)
445_2018_1206_MOESM2_ESM.wmv (5.1 mb)
Video 1 (WMV 5256 kb)
445_2018_1206_MOESM3_ESM.wmv (6.9 mb)
Video 2 (WMV 7047 kb)
445_2018_1206_MOESM4_ESM.pdf (1.3 mb)
ESM 2 (PDF 1338 kb)


  1. Aki K, Richards PG (1980) Quantitative seismology, vol 1424. Freeman, San FranciscoGoogle Scholar
  2. Borselli L (2015) Deconvolution of mixture’s components inside particle size distributions - DECOLOG 5.1.
  3. Branney MJ, Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc Lond Mem 27.
  4. Breard ECP, Lube G (2017) Inside pyroclastic density currents—uncovering the enigmatic flow structure and transport behaviour in large-scale experiments. Earth Planet Sci Lett 458:22–36CrossRefGoogle Scholar
  5. Breton M, Ramirez JJ, Navarro C (2002) Summary of the historical eruptive activity of Volcán De Colima, Mexico 1519–2000. J Volcanol Geotherm Res 117:21–46CrossRefGoogle Scholar
  6. Capra L, Macias JL, Cortes A, Saucedo S, Osorio-Ocampo S, Davila N, Arce JL, Gavilanes-Ruíz JC, Corona-Chávez P, García-Sánchez L, Sosa-Ceballos G, Vázquez R (2016) Preliminary report on the July 10-11, 2015 eruption at Volcán de Colima: pyroclastic density currents with exceptional runouts and volumes. J Volcanol Geotherm Res 310:39–49CrossRefGoogle Scholar
  7. Cole SE, Cronin SJ, Sherburn S, Manville V (2009) Seismic signals of snow-slurry lahars in motion: 25 September 2007, Mt. Ruapehu, New Zealand. Geophys Res Lett 36:L09405CrossRefGoogle Scholar
  8. Coviello V, Arattano M, Turconi L (2015) Detecting torrential processes from a distance with a seismic monitoring network. Nat Hazards 78:2055–2080CrossRefGoogle Scholar
  9. Dartevelle S (2004) Numerical modeling of geophysical granular flows: 1. A comprehensive approach to granular rheologies and geophysical multiphase flows. Geochem Geophys Geoisyst 5.
  10. De Angelis S, Bass V, Hards V, Rayan G (2007) Seismic characterization of pyroclastic flow activity at Soufriere Hills Volcano, Montserrat, 8 January 2007. Nat Hazards Earth Syst Sci 7:467–472CrossRefGoogle Scholar
  11. Doyle EE, Cronin SJ, Cole SE, Thouret JC (2010) The coalescence and organization of lahars at Semeru volcano, Indonesia. Bull Volcanol 72:961–970CrossRefGoogle Scholar
  12. Druitt TH (1998) Pyroclastic density currents. In: Gilbert JS, Sparks RSJ (eds) The physics of explosive volcanic eruptions. Geol Soc Lond Spec Publ 145:145–182.
  13. Dufek J (2016) The fluid mechanics of pyroclastic density currents. Annu Rev Fluid Mech 48:459–485CrossRefGoogle Scholar
  14. Eliazarraras SR, Siebe C, Komorowski JK, Espindola JM, Saucedo R (1991) Field observations of pristine block- and ash-flow deposits emplaced April 16-17, 1991 at Volcán de Colima, Mexico. J Volcanol Geotherm Res 48:399–412CrossRefGoogle Scholar
  15. Escudero CR, Gacía-Millán N, Escalona-Alcázar FJ (2016) Attenuation of coda waves in western Mexico using local seismicity. Bull Seismol Soc Am.
  16. Gertisser R, Cassidy NJ, Charbonnier SJ, Nuzzo L, Preece K (2012) Overbank block-and-ash flow deposits and the impact of valley-derived, unconfined flows on populated areas at Merapi volcano, Java, Indonesia. Nat Hazards 60:623–648CrossRefGoogle Scholar
  17. Hibert C, Mangeney A, Grandjean G, Shapiro N (2011) Slope instabilities in Dolomieu crater, Réunion Island: from seismic signals to rockfall characteristics. J Geophys Res 116:F04032. CrossRefGoogle Scholar
  18. Hibert C, Malet JP, Bourrier F, Provost F, Berger F, Borneann P, Tardif P, Mermin E (2017) Single-block rockfall dynamics inferred from seismic signal analysis. Earth Surf Dyn 5:283–292CrossRefGoogle Scholar
  19. Huang CJ, Shieh CL, Yin HY (2004) Laboratory study of the underground sound generated by debris flows. J Geophys Res 109:F01008. Google Scholar
  20. Huang CJ, Yin HY, Chen CY (2007) Ground vibrations produced by rock motions and debris flows. J Geophys Res 112:F02014. CrossRefGoogle Scholar
  21. Hutter K, Koch T, Pluss C, Savage SB (1995) The dynamics of avalanches of granular materials from initiation to runout. Part II experiments. Acta Mech 109:127–165CrossRefGoogle Scholar
  22. Jolly AD, Thompson G, Norton GE (2002) Locating pyroclastic flows on Soufrieres Hills Volcano, Montserrat, West Indies, using amplitude signals from high dynamic range instruments. J Volcanol Geotherm Res 118:299–317CrossRefGoogle Scholar
  23. Jop P, Forterre Y, Pouliquen O (2005) Crucial role of sidewalls in granular surface flows: consequences for the rheology. J Fluid Mech 541:167–192CrossRefGoogle Scholar
  24. Kean J, Coe J, Coviello V, Smith J, Mccoy SW, Arattano M (2015) Estimating rates of debris flow entrainment from ground vibrations. Geophys Res Lett 42(15):6365–6372CrossRefGoogle Scholar
  25. Kelfoun K (2011) Suitability of simple rheological laws for the numerical simulation of dense pyroclastic flows and long-runout volcanic avalanches. J Geophys Res 116:B08209Google Scholar
  26. Kelfoun K, Druitt TH (2005) Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J Geophys Res 110:B12202CrossRefGoogle Scholar
  27. Lahusen R (2005) Debris-flow instrumentation. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer, Berlin, pp 291–304CrossRefGoogle Scholar
  28. Lavigne F, Thouret J, Voight B, Suwa H, Sumaryono A (2000) Lahars at Merapi volcano, Central Java: an overview. J Volcanol Geotherm Res 100:423–456CrossRefGoogle Scholar
  29. Le Roux JP (2003) Can dispersive pressure cause inverse grading in grain flows? Discussion. J Sediment Res 73:333–334CrossRefGoogle Scholar
  30. Leonard GS, Johnston DM, Paton D, Christianson A, Becker J, Keys H (2008) Developing effective warning systems: Ongoing research at Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 172:199–215CrossRefGoogle Scholar
  31. Levy C, Mangeney A, Bonilla F, Hibert C, Calder ES, Smith PJ (2015) Friction weakening in granular flows deduced from seismic records at the Soufrière Hills Volcano, Montserrat. J Geophys Res B Solid Earth 120(11):7536–7557CrossRefGoogle Scholar
  32. Lube G, Cronin SJ, Platz T, Freundt A, Procter JN, Henderson C, Sheridan MF (2007) Flow and deposition of pyroclastic granular flows: a type example from the 1975 Ngauruhoe eruption, New Zealand. J Volcanol Geotherm Res 161:165–186CrossRefGoogle Scholar
  33. Lube G, Cronin SJ, Thouret JC, Surono (2011) Kinematic characteristics of pyroclastic density currents at Merapi and controls on their avulsion from natural and engineered channels. Geol Soc Am Bull 123:1127–1140CrossRefGoogle Scholar
  34. Lube G, Cronin SJ, Manville V, Procter JN, Cole SE, Freundt A (2012) Energy growth in laharic mass flows. Geology 40:475–478CrossRefGoogle Scholar
  35. Macias JL, Saucedo R, Gavilanes JC, Varley N, Velasco Garcia S, Bursik MI, Vargas Gutierres V, Cortes A (2006) Flujos piroclásticos asociados a la actividad explosiva del Volcán de Colima y perspectivas futuras. GEOS 25:340–351Google Scholar
  36. Macorps E, Charbonnier SJ, Varley NR, Capra L, Atlas Z, Cabré J (2018) Stratigraphy, sedimentology and inferred flow dynamics from the July 2015 block-and-ash flow deposits at Volcán de Colima, Mexico. J Volcanol Geotherm Res 349:99–116CrossRefGoogle Scholar
  37. Mangeney-Castelnau A, Bouchut F, Vilotte J, Lajeunesse E, Aubertin A, Pirulli M (2005) On the use of Saint Venant equations to simulate the spreading of a granular mass. J Geophys Res 110:B09103CrossRefGoogle Scholar
  38. Marchi L, Arattano M, Deganutti AM (2002) Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 46:1–17CrossRefGoogle Scholar
  39. Marcial S, Melosantos A, Hadley KC, Lahasen A, Marso N (1996) Instrumental lahar monitoring at Mount Pinatubo. In: Newhall C, Punongbayan RS (eds) Fire and mud: eruptions and lahars of mount Pinatubo, Philippines. University of Washington Press, Seattle, pp 1015–1022Google Scholar
  40. Patra A, Bauer A, Nichita CC, Pitman EB, Sheridan MF, Bursik MI, Rupp B, Webber A, Stinton AJ, Namikawa L, Renschler C (2005) Parallel adaptive numerical simulation of dry avalanches over natural terrain. J Volcanol Geotherm Res 139:1–21CrossRefGoogle Scholar
  41. Pouliquen O (1999) Scaling laws in granular flows down rough inclined planes. Phys Fluids 11:542–548CrossRefGoogle Scholar
  42. Reyes-Dávila G, Arámbula-Mendoza R, Espinasa-Pereña R, Pankhurst MJ, Navarro-Ochoa C, Savov I, Vargas-Bracamontes DM, Cortés-Cortés A, Gutiérrez-Martínez C, Valdés-González C, Domínguez-Reyes T, González-Amezcua M, Martínez-Fierros A, Ramírez-Vázquez CA, Cárdenas-González L, Castañeda-Bastida E, Vázquez Espinoza de los Monteros D, Nieto-Torres A, Campion R, Courtois L, Lee P (2016) Volcán de Colima dome collapse of July, 2015 and associated pyroclastic density currents. J Volcanol Geotherm Res 320:100–106CrossRefGoogle Scholar
  43. Rodriguez-Elizarrarás SR, Siebe C, Komorowski JC, Espíndola JM, Saucedo R (1991) Field observation of pristine block-and-ash-flow deposits emplaced April 16-17, 1991 at Volcán de Colima, México. J Volcanol Geotherm Res 48:399–412CrossRefGoogle Scholar
  44. Sarno L, Carleo L, Papa MN, Villani P (2017) Experimental investigation on the effects of the fixed boundaries in channelized dry granular flows. J Rock Mech Geotech Eng.
  45. Sarocchi D, Sulpizio R, Macias JL, Saucedo R (2011) The 17 July 1999 block-and-ash flow (BAF) at Colima Volcano: new insights on volcanic granular flows from textural analysis. J Volcanol Geotherm Res 204:40–56CrossRefGoogle Scholar
  46. Savage SB, Lun CKK (1988) Particle size segregation in inclined chute flow of dry cohesionless granular solids. J Fluid Mech 189:311–335CrossRefGoogle Scholar
  47. Sparks RSJ, Gardeweg MC, Calder ES, Matthews SJ (1997) Erosion by pyroclastic flows on Lascar Volcano, Chile. Bull Volcanol 58:557–565CrossRefGoogle Scholar
  48. Sulpizio R, Capra L, Sarocchi D, Saucedo R, Gavilanes JC, Varley N (2010) Predicting the block-and-ash flow inundation areas at Volcán de Colima (Colima, Mexico) based on the present day (February 2010) status. J Volcanol Geotherm Res 193:49–66CrossRefGoogle Scholar
  49. Sulpizio R, Dellino P, Doronzo DM, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geotherm Res 283:36–64CrossRefGoogle Scholar
  50. Tuñgol NM, Regalado MTM (1996) Rainfall, acoustic flow monitor records, and observed lahars of the Sacobia River in 1992. In: Newhall C (ed) Fire and Mud: Eruption and lahars of Mount Pinatubo, Philippines, Philippine Institute of Volcanology and Seismology. Quezon City, University of Washington Press, Seattle and London, pp 475–491Google Scholar
  51. Vázquez R, Capra L, Caballero-García L, Arambula R, Reyez-Dávila G (2014) The anatomy of a lahar: deciphering the 15th September 2012 lahar at Volcán de Colima, Mexico. J Volcanol Geotherm Res 272:126–136CrossRefGoogle Scholar
  52. Vázquez R, Suriñach E, Capra L, Arámbula-Mendoza R, Reyes-Dávila G (2016) Seismic characterisation of lahars at Volcán de Colima Mexico. Bull Volcanol 78(2):8CrossRefGoogle Scholar
  53. Vilajosana I, Suriñach E, Abellán A, Khazaradze G, Garcia D, Llosa J (2008) Rockfall induced seismic signals: case study in Montserrat, Catalonia. Nat Hazards Earth Syst Sci 8(4):805–812CrossRefGoogle Scholar
  54. Wardman JB, Wilson TM, Bodger PS, Cole JW, Johnston DM (2012) Investigating the electrical conductivity of volcanic ash and its effect on HV power systems. Phys Chem Earth 45-46:128–145CrossRefGoogle Scholar
  55. Welch P (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15(2):70–73CrossRefGoogle Scholar
  56. Wilson TM, Stewart C, Sword-Daniels V, Leonard GS, Johnston DM, Cole JW, Wardman JB (2012) Volcanic ash impacts on critical infrastructure. Phys Chem Earth 45-46:5–23CrossRefGoogle Scholar
  57. Zobin VM (2018) Development of the 10–11 July 2015 two-stage sequence of multiple emplacements of pyroclastic density currents at Volcán de Colima, México: insight from associated seismic signals. J Volcanol Geotherm Res 351:29–40CrossRefGoogle Scholar
  58. Zobin VM, Placencia I, Reyes G, Navarro C (2009) The characteristics of seismic signal produced by lahars and pyroclastic flows: Volcán de Colima, Mexico. J Volcanol Geotherm Res 179:157–167CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • L. Capra
    • 1
  • R. Sulpizio
    • 2
    • 3
  • V. H. Márquez-Ramirez
    • 1
  • V. Coviello
    • 1
  • D. M. Doronzo
    • 1
    • 4
  • R. Arambula-Mendoza
    • 5
  • S. Cruz
    • 1
  1. 1.Centro de GeocienciasUniversidad Nacional Autónoma de MéxicoQueretaroMexico
  2. 2.Dipartimento di Scienze della Terra e GeoambientaliBariItaly
  3. 3.IDPA-CNRMilanItaly
  4. 4.Institute of Earth Sciences Jaume Almera, ICTJA, CSICGroup of Volcanology, SIMGEO UB-CSICBarcelonaSpain
  5. 5.Centro Universitario de Estudios e Investigaciones en Vulcanología (CUEIV)Universidad de ColimaColimaMexico

Personalised recommendations