Advertisement

Bulletin of Volcanology

, 80:31 | Cite as

Changes in heat released by hydrothermal circulation monitored during an eruptive cycle at Mt. Etna (Italy)

  • I. S. Diliberto
  • E. Gagliano Candela
  • S. Morici
  • G. Pecoraino
  • S. Bellomo
  • M. Bitetto
  • M. Longo
Research Article

Abstract

The shallow vertical temperature profile has been measured in the proximity of an eruptive fissure far about 4 km north-northeast from Mt. Etna central craters. The monitoring site was a steam-heated soil lying between a group of flank fractures on the upper northeast flank of Mt. Etna (Italy), i.e., on the northeast rift. We chose this area because it was close to an eruptive fissure, that opened in 2002 and extended from about 2500 to about 1500 m a.s.l., with our aim being to determine a connection between this fracture system and the ongoing volcanic activity. Heat flux anomalies from the ground from September 2009 to September 2012 were evaluated. Changes in the hydrothermal release—which can be related to variations in volcanic activity—are discussed and compared to the published geophysical data. The heat flux ranges varied during the pre-eruptive (from about 7 to 38 W × m−2), syn-eruptive (from about 3 to 49 W × m−2), and post-eruptive phases, with the heat released being lowest at the latter phase (from about 1 to 20 W × m−2). Moreover, the heat flux time variation was strongly correlated with the eruption rate from the new southeast crater between January 2011 and April 2012. The migration of magma through active conduits acts as a changing heating source for steam-heated soils located above the active fractures. Our findings suggest that tracking the heat flux above active fractures constitutes a useful investigation field for low-cost thermal monitoring of volcanic activity. Time variations in their emissions could highlight the relationship between a hydrothermal circuit and the local network of fractures, possibly indicating variation in the structural weakness of a volcanic edifice. Continuous monitoring of heat flux, combined with a realistic model, would contribute to multidisciplinary investigations aimed at evaluating changes in volcano dynamics.

Keywords

Volcanic activity Ground temperature Heat flux Fumaroles Continuous monitoring 

Notes

Acknowledgments

The National Department of Civil Protection supported the acquisition of data presented in this work. We are grateful to A. Harris, T. Nishimura, and the anonymous reviewers for comments and excellent suggestions that improved our original manuscript and helped us to underline the results.

References

  1. Aizawa K, Sumino H, Uyeshima M, Yamaya Y, Hase H, Takahashi HA, Takahashi M, Kazahaya K, Ohno M, Arunwan TR, Ogawa Y (2016) Gas pathways and remotely triggered earthquakes beneath Mount Fuji, Japan. Geology 44(2):127–130.  https://doi.org/10.1130/G37313.1 CrossRefGoogle Scholar
  2. Allard P, Carbonnelle J, Dajlevic D, Le Bronec J, Morel P, Robe MC, Maurenas JM, Faivre-Pierret R, Martin D, Sabroux JC, Zettwoog P (1991) Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351(6325):387–391.  https://doi.org/10.1038/351387a0 CrossRefGoogle Scholar
  3. Alparone S, Andronico D, Giammanco S, Lodato L (2004) A multidisciplinary approach to detect active pathways for magma migration and eruption at Mt. Etna (Sicily Italy) before the 2001 and 2002–2003 eruptions. J Volcanol Geotherm Res 136(1-2):121–140.  https://doi.org/10.1016/j.jvolgeores.2004.05.014 CrossRefGoogle Scholar
  4. Aubert M (1999) Practical evaluation of steady heat discharge from dormant active volcanoes: case study of Vulcarolo fissure Mount Etna Italy. J Volcanol Geotherm Res 92(3-4):413–429.  https://doi.org/10.1016/S0377-0273(99)00088-8 CrossRefGoogle Scholar
  5. Aubert M, Diliberto IS, Finizola A, Chébli Y (2008) Double origin of hydrothermal convective flux variations in the Fossa of Vulcano (Italy). Bull Volcanol 70(6):743–751.  https://doi.org/10.1007/s00445-007-0165-y CrossRefGoogle Scholar
  6. Azzaro R, Branca S, Gwinner K, Coltelli M (2012) Volcano-tectonic map of Etna volcano. Ital J Geosci (Boll Soc Geol It) 131:153–170.  https://doi.org/10.3301/IJG.2011.29 Google Scholar
  7. Barberi F, Carapezza ML, Valenza M, Villari L (1993) The control of lava flow during the 1991–1992 eruption of Mt. Etna. J Volcanol Geotherm Res 56(1-2):1–34.  https://doi.org/10.1016/0377-0273(93)90048-V CrossRefGoogle Scholar
  8. Behncke B, Branca S, Corsaro RA, De Beni E, Miraglia L, Proietti C (2014) The 2011–2012 summit activity of Mount Etna: birth growth and products of the new SE crater. J Volcanol Geotherm Res 270:10–21.  https://doi.org/10.1016/j.jvolgeores.2013.11.012 CrossRefGoogle Scholar
  9. Byrdina S, Revil A, Pant SR, Koirala BP, Shrestha PL, Tiwari DR, Gautam UP, Shrestha K, Sapkota SN, Contraires S, Perrier F (2009) Dipolar self-potential anomaly associated with carbon dioxide and radon flux at Syabru-Bensi hot springs in central Nepal. J Geophys Res 114(B10):B10101.  https://doi.org/10.1029/2008JB006154 CrossRefGoogle Scholar
  10. Bombrun M, Spampinato L, Harris A, Barra V, Caltabiano T (2016) On the transition from strombolian to fountaining activity: a thermal energy-based driver. Bullettin Volcanol 78(2):15.  https://doi.org/10.1007/s00445-016-1009-4 CrossRefGoogle Scholar
  11. Bonaccorso A, Calvari S, Garf G, Lodato L, Patane D (2003) Dynamics of the December 2002 flank failure and tsunami at Stromboli volcano inferred by volcanological and geophysical observations. Geophys Res Lett 30(18):1941.  https://doi.org/10.1029/2003GL017702 CrossRefGoogle Scholar
  12. Bonaccorso A, Bonforte A, Calvari S, Del Negro C, Di Grazia G, Ganci G, Neri M, Vicari A, Boschi E (2011a) The initial phases of the 2008–2009 Mount Etna eruption: a multidisciplinary approach for hazard assessment. J Geophys Res 116(B3):B03203.  https://doi.org/10.1029/2010JB007906 CrossRefGoogle Scholar
  13. Bonaccorso A, Cannata A, Corsaro RA, Di Grazia G, Gambino S, Greco F, Miraglia L, Pistorio A (2011b) Multidisciplinary investigation on a lava fountain preceding a flank eruption: the 10 May 2008 Etna case. Geochem Geophys Geosystem 12(7):Q07009.  https://doi.org/10.1029/2010GC003480 CrossRefGoogle Scholar
  14. Bonaccorso A, Calvari S (2013) Major effusive eruptions and recent lava fountains: balance between expected and erupted magma volumes at Etna volcano. Geophys Res Lett 40(23):6069–6073.  https://doi.org/10.1002/2013GL058291 CrossRefGoogle Scholar
  15. Bonfanti P, D’Alessandro W, Dongarrà G, Parello F, Valenza M (1996a) Medium term anomalies in groundwater temperatures before 1991–93 Mt Etna eruption. J Volcanol Geotherm Res 73(3-4):303–308.  https://doi.org/10.1016/0377-0273(96)00026-1 CrossRefGoogle Scholar
  16. Bonfanti P, D’Alessandro W, Dongarrà G, Parello F, Valenza M (1996b) Mt Etna eruption 1991–1993: geochemical anomalies in groundwaters. Acta Vulcanol 8(1):107–109Google Scholar
  17. Bonneville A, Vasseur G, Kerr Y (1985) Satellite thermal infrared observations of Mt. Etna after the 17th March 1981 eruption. J Volcanol Geotherm Res 24(3-4):293–313.  https://doi.org/10.1016/0377-0273(85)90074-5 CrossRefGoogle Scholar
  18. Bonneville A, Kerr Y (1987) A thermal forerunner of the 28th March 1983 Mt. Etna eruption from satellite thermal infrared data. J Geodyn 7(1-2):1–31.  https://doi.org/10.1016/0264-3707(87)90061-5 CrossRefGoogle Scholar
  19. Bonneville A, Gouze P (1992) Thermal survey of Mount Etna from space. Geophys Res Lett 19(7):725–728.  https://doi.org/10.1029/92GL00580 CrossRefGoogle Scholar
  20. Calvari S, Salerno GG, Spampinato L, Gouhier M, La Spina A, Pecora E, Harris AJL, Labazuy P, Biale E, Boschi E (2011) An unloading foam model to constrain Etna’s 11–13 January 2011 lava fountaining episode. J Geophys Res 116(B11):B11207.  https://doi.org/10.1029/2011JB008407 CrossRefGoogle Scholar
  21. Camarda M, De Gregorio S, Gurrieri S (2012) Magma-ascent processes during 2005–2009 at Mt Etna inferred by soil CO2 emissions in peripheral areas of the volcano. Chem Geol 330-331:218–227.  https://doi.org/10.1016/j.chemgeo.2012.08.024 CrossRefGoogle Scholar
  22. Cannata A, Diliberto IS, Alparone S, Gambino S, Gresta S, Liotta M, Madonia P, Milluzzo V, Aliotta M, Montalto P, (2012) Multiparametric approach in investigating hydrothermal systems: the case of study of Vulcano (Aeolian islands Italy). Pure and Applied Geophysics 169:167–182  https://doi.org/10.1007/s00024-011-0297-z
  23. Cannata A, Spedalieri G, Behncke B, Cannavò F, Di Grazia G, Gambino S, Gresta S, Gurrieri S, Liuzzo M, Palano M (2015) Pressurization and depressurization phases inside the plumbing system of Mount Etna volcano: evidence from a multiparametric approach. J Geophys Res Solid Earth 120(9):5965–5982.  https://doi.org/10.1002/2015JB012227 CrossRefGoogle Scholar
  24. Chiodini G, Cioni R, Marini L, Panichi C (1995) Origin of the fumarolic fluids of Vulcano Island, Italy and implications for volcanic surveillance. Bull Volcanol 57(2):99–110.  https://doi.org/10.1007/BF00301400 CrossRefGoogle Scholar
  25. Chiodini G, Granieri D, Avino R, Caliro S, Costa A, Werner C (2005) Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems. J Geophys Res 110(B8):B08204.  https://doi.org/10.1029/2004JB003542 CrossRefGoogle Scholar
  26. Corsaro RA, Andronico D, Behncke B, Branca S, Caltabiano T, Ciancitto F, Cristaldi A, DeBeni E, La Spina A, Lodato L, Miraglia L, Neri M, Salerno G, Scollo S, Spata G (2017) Monitoring the December 2015 summit eruptions of Mt Etna (Italy): Implications on eruptive dynamics. Journal of Volcanology and Geothermal Research 341:53–69.  https://doi.org/10.1016/jjvolgeores201704018 CrossRefGoogle Scholar
  27. D’Alessandro W, Giammanco S, Parello F, Valenza M (1997) CO2 output and δ13C(CO2) from Mount Etna as indicators of degassing of shallow asthenosphere. Bullettin Volcanol 58(6):455–458.  https://doi.org/10.1007/s004450050154 CrossRefGoogle Scholar
  28. De Gregorio S, Camarda M, Gurrieri S, Favara R (2014) Change in magma supply dynamics identified in observations of soil CO2 emissions in the summit area of Mt Etna. Bullettin Volcanol 76(8):846.  https://doi.org/10.1007/s00445-014-0846-2 CrossRefGoogle Scholar
  29. Di Martino RMR, Camarda M, Gurrieri S, Valenza M (2013) Continuous monitoring of hydrogen and carbon dioxide at Mt Etna. Chem Geol 357:41–51.  https://doi.org/10.1016/j.chemgeo.2013.08.023 CrossRefGoogle Scholar
  30. Diliberto IS (2017) Long-term monitoring on a closed-conduit volcano: a 25-year long time-series of temperatures recorded at La Fossa cone (Vulcano Island). J Volcanol Geotherm Res 346:151–160.  https://doi.org/10.1016/j.jvolgeores.2017.03.005 CrossRefGoogle Scholar
  31. Facca C, Tonani F (1967) The self-sealing geothermal field. Bull Volcan 30(1):271–273.  https://doi.org/10.1007/BF02597674 CrossRefGoogle Scholar
  32. Federico C, Capasso G, Paonita A, Favara R (2010) Effects of steam-heating processes on a stratified volcanic aquifer: stable isotopes and dissolved gases in thermal waters of Vulcano Island (Aeolian archipelago). J Volcanol Geotherm Res 192(3):178–190.  https://doi.org/10.1016/j.jvolgeores.2010.02.020 CrossRefGoogle Scholar
  33. Federico C, Inguaggiato S, Chacón Z, Londoño JM, Gil E, Alzate D (2017) Vapour discharges on Nevado del Ruiz during the recent activity: clues on the composition of the deep hydrothermal system and its effects on thermal springs. J Volcanol Geotherm Res 346:40–53.  https://doi.org/10.1016/j.jvolgeores.2017.04.007 CrossRefGoogle Scholar
  34. Giammanco S, Inguaggiato S, Valenza M (1998) Soil and fumarole gases of Mount Etna: geochemistry and relations with volcanic activity. J Volcanol Geotherm Res 81(1-3):297–310.  https://doi.org/10.1016/j.jvolgeores.2010.04.006 CrossRefGoogle Scholar
  35. Giammanco S, Sims KWW, Neri M (2007) Measurements of 220Rn and 222Rn and CO2 emissions in soil and fumarole gases on Mt Etna volcano (Italy): implications for gas transport and shallow ground fracture. Geochem Geophys Geosyst 8(10):Q10001.  https://doi.org/10.1029/2007GC001644 CrossRefGoogle Scholar
  36. Giammanco S, Melián G, Neri M, Hernández PA, Sortino F, Barrancos J, López M, Pecoraino G, Perez NM (2016) Active tectonic features and structural dynamics of the summit area of Mt Etna (Italy) revealed by soil CO2 and soil temperature surveying. J Volcanol Geotherm Res 311:79–98.  https://doi.org/10.1016/j.jvolgeores.2016.01.004 CrossRefGoogle Scholar
  37. Harris AJL, Butterworth AL, Carlton RW, Downey I, Miller P, Navarro P, Rothery DA (1997) Low-cost volcano surveillance from space: case studies from Etna, Krafla, Cerro Negro, Fogo, Lascar and Erebus. Bull Volcanol 59(1):49–64.  https://doi.org/10.1007/s004450050174 CrossRefGoogle Scholar
  38. Harris AJL (2013) Thermal remote sensing of active volcanoes: a user’s manual. Cambridge University Press, Cambridge.  https://doi.org/10.1017/CBO9781139029346 CrossRefGoogle Scholar
  39. Heasler, H., C. Jaworowski and D. Foley (2009). Geothermal systems and monitoring hydrothermal features. Geological Monitoring. R. Young and L. Norby. Boulder, Colorado, Geological Society of America.  https://doi.org/10.1130/2009.monitoring(05)
  40. Inguaggiato S, Vita F, Rouwet D, Bobrowski N, Morici S, Sollami A (2011) Geochemical evidence of the renewal of volcanic activity inferred from CO2 soil and SO2 plume fluxes: the 2007 Stromboli eruption (Italy). In: Inguaggiato S, Shinohara H, and Fischer T (eds) Geochemistry of volcanic fluids: a special issue in honor of Yuri A. Taran Bull Volcanol 73(4):443–456.  https://doi.org/10.1007/s00445-010-0442-z CrossRefGoogle Scholar
  41. Inguaggiato S, Diliberto IS, Federico C, Paonita A, Vita F (2018) Review of the evolution of geochemical monitoring, networks and methodologies applied to the volcanoes of the Aeolian Arc (Italy). Earth Sci Rev 176:241–276.  https://doi.org/10.1016/j.earscirev.2017.09.006 CrossRefGoogle Scholar
  42. Lardy M, Tabbagh A (1999) Measuring and interpreting heat fluxes from shallow volcanic bodies using vertical temperature profiles: a preliminary test. Bull Volcanol 60(6):441–447.  https://doi.org/10.1007/s004450050244 CrossRefGoogle Scholar
  43. Liotta M, Paonita A, Caracausi A, Martelli M, Rizzo A, Favara R (2010) Hydrothermal processes governing the geochemistry of the crater fumaroles at Mount Etna volcano (Italy). Chem Geol 278:92–104.  https://doi.org/10.1016/jchemgeo201009004 CrossRefGoogle Scholar
  44. Lowenstern JB, Smith RB, Hill DP (2006) Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems. Phil Trans R Soc A 364(1845):2055–2072.  https://doi.org/10.1098/rsta.2006.1813 CrossRefGoogle Scholar
  45. Madonia P, Rizzo A, Diliberto IS, Favara R (2013) Continuous monitoring of fumarole temperatures at Mount Etna (Italy). J Volcanol Geotherm Res 257:12–20.  https://doi.org/10.1016/j.jvolgeores.2013.03.001 CrossRefGoogle Scholar
  46. Maldonado LFM, Inguaggiato S, Jaramillo MT, Valencia GG, Mazot A (2017) Volatiles and energy released by Puracé volcano. Bull Volcanol 79(12):84.  https://doi.org/10.1007/s00445-017-1168-y CrossRefGoogle Scholar
  47. Matsushima N, Kazahaya K, Saito G, Hiroshi Shinohara H (2003) Mass and heat flux of volcanic gas discharging from the summit crater of Iwodake volcano, Satsuma-Iwojima, Japan, during 1996–1999. J Volcanol Geotherm Res 126(3–4):285–301.  https://doi.org/10.1016/S0377-0273(03)00152-5 CrossRefGoogle Scholar
  48. Mattia M, Bruno V, Caltabiano T, Cannata A, Cannavo F, D’Alessandro W, Di Grazia G, Federico C, Giammanco S, La Spina A, Liuzzo M, Longo M, Monaco C, Patane` D, Salerno G (2015) A comprehensive interpretative model of slow slip events on Mt Etna’s eastern flank. Geochem Geophys Geosyst 16:635–658.  https://doi.org/10.1002/2014GC005585 CrossRefGoogle Scholar
  49. Maucourant S, Giammanco S, Greco F, Dorizon S, Del Negro C (2014) Geophysical and geochemical methods applied to investigate fissure-related hydrothermal systems on the summit area of Mt Etna volcano (Italy). J Volcanol Geotherm Res 280:111–125.  https://doi.org/10.1016/jjvolgeores201405014 CrossRefGoogle Scholar
  50. Mazot A, Rouwet D, Taran Y, Inguaggiato S, Varley N (2011) CO2 and He degassing at El Chichón volcano (Chiapas, Mexico): gas flux, origin, and relationship with local and regional tectonics. Bull Volcanol 73(4):423–441.  https://doi.org/10.1007/s00445-010-0443-y. CrossRefGoogle Scholar
  51. Neri M, Acocella V, Behncke B, Giammanco S, Mazzarini F, Rust D (2011) Structural analysis of the eruptive fissures at Mount Etna (Italy). Ann Geoph 54(5):464–479.  https://doi.org/10.4401/ag-5332 Google Scholar
  52. Neri M, Ferrara E, Giammanco S, Currenti G, Cirrincione R, Patanè D, Zanon V (2016) Soil radon measurements as a potential tracer of tectonic and volcanic activity. Sci Rep 6:24581;  https://doi.org/10.1038/srep24581
  53. Ohara S, Okamoto J (1980) Heat discharge estimate in steaming ground. J Geotherm Res Soc Jpn 2(2):13–27.  https://doi.org/10.1016/j.geothermics.2004.04.002 Google Scholar
  54. Oskarsson N (1984) Monitoring of fumarole discharge during the 1975–1982 rifting in Krafla volcanic center North Iceland. J Volcanol Geotherm Res 22(1-2):97–121.  https://doi.org/10.1016/0377-0273(84)90036-2 CrossRefGoogle Scholar
  55. Paonita A, Caracausi A, Iacono-Marziano G, Martelli M, Rizzo AL (2012) Geochemical evidence for mixing between fluids exsolved at different depths in the magmatic system of Mt Etna (Italy). Geochim Cosmochim Acta 84:380–394.  https://doi.org/10.1016/j.gca.2012.01.028 CrossRefGoogle Scholar
  56. Paonita A, Federico C, Bonfanti P, Capasso G, Inguaggiato S, Italiano F, Madonia P, Pecoraino G, Sortino F (2013) The episodic and abrupt geochemical changes at La Fossa fumaroles (Vulcano Island, Italy) and related constraints on the dynamics, structure, and compositions of the magmatic system. Geochim Cosmochim Acta 120:158–178.  https://doi.org/10.1016/j.gca.2013.06.015 CrossRefGoogle Scholar
  57. Paonita A, Longo M, Bellomo S, D’Alessandro W, Brusca L (2016) Dissolved inert gases (He, Ne, and N2) as markers of groundwater flow and degassing areas at Mt Etna volcano (Italy). Chem Geol 443(2):10–21.  https://doi.org/10.1016/j.chemgeo.2016.09.018 CrossRefGoogle Scholar
  58. Patanè D, De Gori P, Chiarabba C, Bonaccorso A (2003) Magma ascent and the pressurization of Mount Etna’s volcanic system. Science 299(5615):2061–2063.  https://doi.org/10.1126/science.1080653 CrossRefGoogle Scholar
  59. Patanè D, Mattia M, Aloisi M (2005) Shallow intrusive processes during 2002–2004 and current volcanic activity on Mt. Etna. Geophys Res Lett 32(6):L06302.  https://doi.org/10.1029/2004GL021773 CrossRefGoogle Scholar
  60. Patané G, La Delfa S, Tanguy JC (2006) Volcanism and mantle–crust evolution: the Etna case. Earth Planet Sci Lett 241(3–4):831–843.  https://doi.org/10.1016/j.epsl.2005.10.039 CrossRefGoogle Scholar
  61. Pecoraino G, Giammanco S (2005) Geochemical characterization and temporal changes in parietal gas emissions at Mt Etna (Italy) during the period July 2000–July 2003. TAO 16(4):805–841  https://doi.org/10.3319/TAO.2005.16.4.805(GIG)
  62. Peiffer L, Rouwet D, Taran Y (2015) Fluid geochemistry of El Chichón volcano-hydrothermal system. In: Scolamacchia T., Macías J. (eds) active volcanoes of Chiapas (Mexico): El Chichón and Tacaná. Active volcanoes of the world. Springer, Berlin, Heidelberg.  https://doi.org/10.1007/978-3-642-25890-9_4 Google Scholar
  63. Revil A, Finizola A, Ricci T, Delcher E, Peltier A, Barde-Cabusson S, Colonge J (2011) Hydrogeology of Stromboli volcano Aeolian Islands (Italy) from the interpretation of resistivity tomograms self-potential soil temperature and soil CO2 concentration measurements. Geophys J Int 186(3):1078–1094.  https://doi.org/10.1111/j.1365-246X.2011.05112.x CrossRefGoogle Scholar
  64. Rizzo LA, Caracausi A, Liotta M, Paonita A, Barnes JD, Corsaro RA, Martelli M (2013) Chlorine isotope composition of volcanic gases and rocks at Mount Etna (Italy) and inferences on the local mantle source. Earth Planet Sci Lett 371-372:134–142.  https://doi.org/10.1016/j.epsl.2013.04.004 CrossRefGoogle Scholar
  65. Ruch J, Pepe S, Casu F, Acocella V, Neri M, Solaro G, Sansosti E (2012) How do volcanic rift zones relate to flank instability? Evidence from collapsing rifts at Etna. Geophys Res Lett 39:L20311.  https://doi.org/10.1029/2012GL53683 CrossRefGoogle Scholar
  66. Ruch J, Pepe S, Casu F, Solaro G, Pepe A, Acocella V, Neri M, Sansosti E (2013) Seismo-tectonic behavior of the Pernicana Fault System (Mt Etna): a gauge for volcano flank instability? Geophys Res Lett: Solid Hearth 118:4398–4409.  https://doi.org/10.1002/jgrb50281 CrossRefGoogle Scholar
  67. Sato M, McGee KA (1982) Continuous monitoring of hydrogen on south flank of Mount St Helens. In: Lipman PW Mullineaux DR (Eds). The 1980 eruption of Mount St Helens, Washington. Geol Surv Prof Pap 1250:209–219Google Scholar
  68. Sekioka M, Yuhara K (1974) Heat flux estimation in geothermal areas based on the heat balance of the ground surface. J Geophys Res 79(14):2053–2058.  https://doi.org/10.1029/JB079i014p02053 CrossRefGoogle Scholar
  69. Stevens NF, Murray JB, Wadge G (1997) The volume and shape of the 1991–1993 lava flow field at Mount Etna, Sicily. Bull Volcanol 58(6):449–454 https://doi.org/.  https://doi.org/10.1007/s004450050153 CrossRefGoogle Scholar
  70. Stix J, Gaonach H (2000) Gas, plume and thermal monitoring. In: Encyclopedia of volcanoes. Edited by H. Sigurdsson. Academic Press, pp 1141–1164Google Scholar
  71. Tabbagh A, Trezeguet D (1987) Determination of sensible heat flux in volcanic areas from ground temperature measurements along vertical profiles: the case study of Mount Etna Sicily. Italy J Geophys Res 92_B5:3635–3644  https://doi.org/10.1029/JB092iB05p03635
  72. Tabbagh A, Lardy M (1993) Analysis of shallow heat flow measurement on Matthews and Hunter volcanoes (SW Pacific). Geothermics 22(1):65–78.  https://doi.org/10.1016/0375-6505(93)90021-E CrossRefGoogle Scholar
  73. Tanguy J-C, Kieffer G, Patane G (1996) Dynamics, lava volume and effusion rate during the 1991–1993 eruption of Mount Etna. J Volcanol Geotherm Res 71(2-4):259–265.  https://doi.org/10.1016/0377-0273(95)00081-X CrossRefGoogle Scholar
  74. Tomasi C, Vitale V, De Santis LV (1997) Relative optical mass functions for air water vapour ozone and nitrogen dioxide in atmospheric models presenting different latitude and seasonal conditions. Meteorog Atmos Phys 65(1-2):11–30.  https://doi.org/10.1007/BF01030266 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • I. S. Diliberto
    • 1
  • E. Gagliano Candela
    • 1
  • S. Morici
    • 1
  • G. Pecoraino
    • 1
  • S. Bellomo
    • 1
  • M. Bitetto
    • 1
  • M. Longo
    • 1
  1. 1.Istituto Nazionale di Geofisica e Vulcanologia, Sezione di PalermoPalermoItaly

Personalised recommendations