Skip to main content
Log in

Vapor-phase cristobalite as a durable indicator of magmatic pore structure and halogen degassing: an example from White Island volcano (New Zealand)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Vesicles in volcanic rocks are physical records of magmatic degassing; however, the interpretation of their textures is complicated by resorption, coalescence, and collapse. We discuss the textural significance of vesicle-hosted vapor-phase cristobalite (high-T, low-P SiO2 polymorph), and its utility as a complement to textural assessments of magmatic degassing, using a representative dacite bomb erupted from White Island volcano (New Zealand) in 1999. Imaging in 2D (SEM) and 3D (CT) shows the bomb to have 56% bulk porosity, almost all of which is connected (~ 99%) and devoid of SiO2 phases. The remaining (~ 1%) of porosity is in isolated, sub-spherical vesicles that have corroded walls and contain small (< 30 μm across) prismatic vapor-phase cristobalite crystals (98.4 ± 0.4 wt.% SiO2 with diagnostic laser Raman spectra). Halogen degassing models show vapor-phase cristobalite to be indicative of closed-system chlorine and fluorine partitioning into H2O-rich fluid in isolated pores. At White Island, this occurred during shallow (< 100s of meters) ascent and extensive (~ 50%) groundmass crystallization associated with slow cooling in a volcanic plug. Pristine textures in this White Island bomb demonstrate the link between pore isolation and vapor-phase cristobalite deposition. We suggest that because these crystals have higher preservation potential than the bubbles in which they form, they can serve as durable, qualitative textural indicators of halogen degassing and pre-quench bubble morphologies in slowly cooled volcanic rocks (e.g., lava flows and domes), even where emplacement mechanisms have overprinted original bubble textures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baker DR, Balcone-Boissard H (2009) Halogen diffusion in magmatic systems: our current state of knowledge. Chem Geol 263:82–88. https://doi.org/10.1016/j.chemgeo.2008.10.010

    Article  Google Scholar 

  • Baker DR, Mancini L, Polacci M, Higgins MD, Gualda GAR, Hill RJ, Rivers ML (2012) An introduction to the application of X-ray microtomography to the three-dimensional study of igneous rocks. Lithos 148:262–276. https://doi.org/10.1016/j.lithos.2012.06.008

    Article  Google Scholar 

  • Balcone-Boissard H, Villement B, Boudon G (2010) Behaviour of halogens during the degassing of felsic magmas. Geochem Geophys Geosys 11:Q09005. https://doi.org/10.1029/2010GC003028

    Article  Google Scholar 

  • Baxter PJ, Bonadonna C, Dupree R, Hards VL, Kohn SC, Murphy MD, Nichols A, Nicholson RA, Norton GE, Searl A, Sparks RSJ, Vickers BP (1999) Cristobalite in volcanic ash of the Soufriere Hills Volcano, Montserrat, British West Indies. Science 283:1142–1145

    Article  Google Scholar 

  • Best MG (2003) Igneous and metamorphic petrology, Second edn. Blackwell Publishing, Malden, p 729

    Google Scholar 

  • Boudon G, Balcone-Boissard H, Villemant B, Morgan DJ (2015) What factors control superficial lava dome explosivity? Sci Reps 5:14551. https://doi.org/10.1038/srep14551

    Article  Google Scholar 

  • Burton M, Allard P, Mure F, La Spina A (2007) Magmatic gas composition reveals the source depth of slug-driven strombolian explosive activity. Science 317:227–230

    Article  Google Scholar 

  • Cashman KV, Mangan MT (1994) Physical aspects of magmatic degassing; II, constraints on vesiculation processes from textural studies of eruptive products. In: Carroll MR, Holloway JR (eds) Volatiles in magmas, reviews in mineralogy. pp 447-478

  • Churakov SV, Tkachenko SI, Korzhinskii MA, Bocharnikov RE, Schmulovich KI (2000) Evolution of composition of high- temperature fumarolic gases from Kudryavy Volcano, Iturup, Kuril Islands: the thermodynamic modeling. Geochem Int 38:436–451

    Google Scholar 

  • Cole JW, Thordarson T, Burt RM (2000) Magma origin and evolution of White Island (Whakaari) volcano, Bay of Plenty, New Zealand. J Petrol 41:867–895

    Article  Google Scholar 

  • Damby DE (2012) From dome to disease: the respiratory toxicity of volcanic cristobalite. In: Department of Earth Sciences. Durham University, Durham, p 359

    Google Scholar 

  • Damby DE, Llewellin EW, Horwell CJ, Williamson BJ, Najorka J, Cressey G, Carpenter M (2014) The α-β phase transition in volcanic cristobalite. J Appl Cristallogr 47:1205–1215. https://doi.org/10.1107/S160057671401070X

    Article  Google Scholar 

  • de Hoog JCM, van Bergen MJ, Jacobs MHG (2005) Vapour-phase crystallisation of silica from SiF4-bearing volcanic gases. Ann Geophys 48:775–785

    Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals, 2nd edn. John Wiley and Sons, New York

    Google Scholar 

  • Duncan AR (1970) The petrology and petrochemistry of andesite and dacite volcanoes in Eastern Bay of Plenty, New Zealand. In: Geology. Victoria University of Wellington, Wellington, p 360

    Google Scholar 

  • Edmonds M, Pyle DM, Oppenheimer C (2002) HCl emissions at Soufrière Hills Volcano, Montserrat, West Indies, during a second phase of dome building: November 1999 to. October 2000. Bull Volcanol 64:21–30. https://doi.org/10.1007/s00445-001-0175-0

    Article  Google Scholar 

  • Edmonds M, Wallace PJ (2017) Volatiles and exsolved vapor in volcanic systems. Elements 13:29–34. https://doi.org/10.2113/gselements.13.1.29

    Article  Google Scholar 

  • Eichelberger JC, Carrigan CR, Westrich HR, Price RH (1986) Non-explosive silicic volcanism. Nature 323:598–602. https://doi.org/10.1038/323598a0

    Article  Google Scholar 

  • Esposito R, Hunter J, Schiffbauer JD, Shimizu N, Bodnar RJ (2014) An assessment of the reliability of melt inclusions as recorders of the pre-eruptive volatile content of magmas. Am Mineral 99:976–998. https://doi.org/10.2138/am.2014.4574

    Article  Google Scholar 

  • GeoNet (2017) White Island Alert Level https://www.geonet.org.nz/volcano/whiteisland, accessed Sept 13, 2017

  • Giggenbach WF (1975) Variations in the carbon, sulfur and chlorine contents of volcanic gas discharges from White Island, New Zealand. Bull Volcanologique 39:15–27

    Article  Google Scholar 

  • Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2:143–161

    Article  Google Scholar 

  • Gillet P, Le Cléac'h A (1990) High-temperature raman spectroscopy of SiO2 and GeO2 polymorphs: anharmonicity and thermodynamic properties at high-temperatures. J Geophys Res 95(B13):21635–21655. https://doi.org/10.1029/JB095iB13p21635

    Article  Google Scholar 

  • Global Volcanism. Program (1998) Report on White Island (New Zealand). In: Wunderman R (ed) Bulletin of the Global Volcanism Network. Smithsonian Institution, p 8

  • Global Volcanism. Program (2013) WHITE ISLAND (241040). In: Venzke E (ed) Volcanoes of the world. Smithsonian Institution. https://www.geonet.org.nz/volcano/whiteisland, accessed Sept 13, 2017. doi:https://doi.org/10.5479/si.GVP.VOTW4-2013

  • Gurioli L, Colo L, Bollasina AJ, Harris AJL, Whittington A, Ripepe M (2014) Dynamics of Strombolian explosions: inferences from field and laboratory studies of erupted bombs from Stromboli volcano. J Geophys Res Solid Earth 119:319–345. https://doi.org/10.1002/2013JB010355

    Article  Google Scholar 

  • Harford CL, Sparks RSJ, Fallick AE (2003) Degassing at the Soufrière Hills volcano, Montserrat, recorded in matrix glass compositions. J Petrol 44:1503–1523

    Article  Google Scholar 

  • Heaney PJ (1994) Structure and chemistry of the low-pressure silica polymorphs. Rev Mineral 29:1–40

    Google Scholar 

  • Horwell CJ, Baxter PJ (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69:1–24. https://doi.org/10.1007/s00445-006-0052-y

    Article  Google Scholar 

  • Horwell CJ, Hillman SE, Cole PD, Loughlin SC, Llewellin EW, Damby DE, Christopher TE (2014) Controls on variations in cristobalite abundance in ash generated by the Soufrière Hills Volcano, Montserrat in the period 1997-2010. Geol Soc London Memoirs 39:399–406. https://doi.org/10.1144/M39.21

    Article  Google Scholar 

  • Horwell CJ, Le Blond JS, Michnowicz SAK, Cressey G (2010) Cristobalite in a rhyolitic lava dome: evolution of ash hazard. Bull Volcanol 72:249–253. https://doi.org/10.1007/s00445-009-0327-1

    Article  Google Scholar 

  • Horwell CJ, Williamson BJ, Llewellin EW, Damby DE, Le Blond JS (2013) The nature and formation of cristobalite at the Soufrière Hills volcano, Montserrat: implications for the petrology and stability of silicic lava domes. Bull Volcanol 75:696. https://doi.org/10.1007/s00445-013-0696-3

    Article  Google Scholar 

  • Houghton BF, Nairn IA (1991) The 1976-1982 Strombolian and phreatomagmatic eruptions of White Island, New Zealand: eruptive and depositional mechanisms at a 'wet' volcano. Bull Volcanol 54:25–49

    Article  Google Scholar 

  • Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newslett 4:43–47

    Article  Google Scholar 

  • Kennedy BM, Wadsworth FB, Vasseur J, Schipper CI, Jellinek AM, von Aulock FW, Hess K-U, Russell JK, Lavallée Y, Nichols ARL, Dingwell DB (2016) Surface tension driven processes densify and retain permeability in magma and lava. Earth Planet Sci Lett 433:116–124. https://doi.org/10.1016/j.epsl.2015.10.031

    Article  Google Scholar 

  • Kilgour G, Moune S, Della Pasqua F, Christenson BW (2016) Petrological insights into the 1976-2000 eruption episode of White Island, New Zealand: an eruption fuelled by repeated mafic recharge. Geophysical Research Abstracts, EGU General Assembly, Vienna, 18

  • Kingma KJ, Hemley RJ (1994) Raman spectroscopic study of microcrystalline silica. Am Mineral 79:269–273

    Google Scholar 

  • Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Wooley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Limaye A (2012) Drishti: a volume exploration and presentation tool. Developments in X-Ray Tomography VIII 85060X

  • Lowenstern JB, Bleick H, Vazquez JA, Castro JM, Larson PB (2012) Degassing of Cl, F, Li, and Be during extrusion and crystallization of the rhyolite dome at Volcán Chaitén, Chile during 2008 and 2009. Bull Volcanol 74:2303–2319. https://doi.org/10.1007/s00445-012-0663-4

    Article  Google Scholar 

  • Marty B, Giggenbach WF (1990) Major and rare gases at White Island volcano, New Zealand: origin and flux of volatiles. Geophys Res Lett 17:247–250. https://doi.org/10.1029/GL017i003p00247

    Article  Google Scholar 

  • McIntosh IM, Llewellin EW, Humphreys MCS, Nichols ARL, Burgisser A, Schipper CI, Larsen JF (2014) Distribution of dissolved water in magmatic glass records growth and resorption of bubbles. Earth Planet Sci Lett 401:1–11. https://doi.org/10.1016/j.epsl.2014.05.037

    Article  Google Scholar 

  • Métrich N, Bertagnini A, Di Muro A (2010) Conditions of magma storage, degassing and ascent at Stromboli: new insights into the volcano plumbing system with inferences on the eruptive dynamics. J Petrol 51:603–626. https://doi.org/10.1093/petrology/egp083

    Article  Google Scholar 

  • Metrich N, Rutherford MJ (1992) Experimental study of chlorine behavior in hydrous silicic melts. Geochim Cosmochim Acta 56:607–616

    Article  Google Scholar 

  • Murtagh RM, White JDL (2013) Pyroclast characteristics of a subaqueous to emergent Surtseyan eruption, Black Point volcano, California. J Volcanol Geotherm Res 267:75–91. https://doi.org/10.1016/j.jvolgeores.2013.08.015

    Article  Google Scholar 

  • Okumura S, Nakamura M, Nakashima S (2003) Determination of molar absorptivity of IR fundamental OH-stretching vibration in rhyolitic glasses. Am Mineral 88:1657–1662

    Article  Google Scholar 

  • Polacci M, Corsaro RA, Andronico D (2006) Coupled textural and compositional characterization of basaltic scoria; insights into the transition from Strombolian to fire fountain activity at Mount Etna, Italy. Geology 34:201–204

    Article  Google Scholar 

  • Rapien MH, Bodnar RJ, Simmons SF, Szabo CS, Wood CP, Sutton SR (2003) Melt inclusion study of the embryonic porphyry copper system at White Island, New Zealand. Soc Econ Geol Spec Pub 10:41–59

    Google Scholar 

  • Rose WI, Chuan RL, Giggenbach WF, Kyle PR, Symonds RB (1986) Rates of sulfur dioxide and particle emissions from White Island volcano, New Zealand, and an estimate of the total flux of major gas species. Bull Volcanol 48:181–188

    Article  Google Scholar 

  • Rust AC, Manga M, Cashman KV (2003) Determining flow type, shear rate and shear stress in magmas from bubble shapes and orientations. J Volcanol Geotherm Res 122:111–132

    Article  Google Scholar 

  • Sable JE, Houghton BF, Wilson CJN, Carey RJ (2009) Eruption mechanisms during the climax of the Tarawera 1886 basaltic Plinian eruption inferred from microtextural characteristics of the deposits. In: Thordarson T, Self S, Larsen G, Rowland SK, Hoskuldsson A (eds) Studies in volcanology: the legacy of George Walker. Geological Society, London, pp 129–154

    Google Scholar 

  • Schaeffer HA, Stengel M, Mecha J (1986) Dealkinization of glass surfaces utilizing HCl gas. J Non-Cryst Solid 80:400–404

    Article  Google Scholar 

  • Schipper CI, Castro JM, Tuffen H, Wadsworth FB, Chappell D, Pantoja AE, Simpson M, Le Ru EC (2015) Cristobalite in the 2011-12 Cordón Caulle eruption (Chile). Bull Volcanol 77:34. https://doi.org/10.1007/s00445-015-0925-z

    Article  Google Scholar 

  • Schipper CI, White JDL, Nichols ARL, Burgisser A, Hellebrand E, Murtagh R (2012) Incipient melt segregation as preserved in subaqueous pyroclasts. Geology 40:355–358. https://doi.org/10.1130/G32582.1

    Article  Google Scholar 

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  Google Scholar 

  • Severs MJ, Beard JS, Fedele L, Hanchar JM, Mutchler SR, Bodnar RJ (2009) Partitioning behavior of trace elements between dacitic melt and plagioclase, orthopyroxene, and clinopyroxene based on laser ablation ICPMS analysis of silicate melt inclusions. Geochim Cosmochim Acta 73:2123–2141. https://doi.org/10.1016/j.gca.2009.01.009

    Article  Google Scholar 

  • Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010) Textural studies of vesicles in volcnaic rocks: an integrated methodology. J Volcanol Geotherm Res 190:271–289. https://doi.org/10.1016/j.jvolgeores.2009.12.003

    Article  Google Scholar 

  • Shmulovich KI, Yardley BWD, Graham CM (2006) Solubility of quartz in crustal fluids: experiments and general equations for salt solutions and H2O-CO2 mixtures at 400-800 oC and 0.1-0.9 GPa. Geofluids 6:154–167. https://doi.org/10.1111/j.1468-8123.2006.00140.x

    Article  Google Scholar 

  • Stovall WK, Houghton BF, Gonnermann HM, Fagents SA, Swanson DA (2010) Eruption dynamics of Hawaiian-style fountains: the case study of episode 1 of the Kīlauea Iki 1959 eruption. Bull Volcanol 73:511–529. https://doi.org/10.1007/s00445-010-0426-z

    Article  Google Scholar 

  • Swanson SE, Naney MT, Westrich HR, Eichelberger JC (1989) Crystallization history of Obsidian Dome, Inyo Domes, California. Bull Volcanol 51:161–176

    Article  Google Scholar 

  • Thomas RME, Sparks RSJ (1992) Cooling of tephra during fallout from eruption columns. Bull Volcanol 54:542–553. https://doi.org/10.1007/BF00569939

    Article  Google Scholar 

  • Villemant B, Boudon G (1999) H2O and halogen (F, Cl, Br) behaviour during shallow magma degassing processes. Earth Planet Sci Lett 168:271–286

    Article  Google Scholar 

  • Villemant B, Mouatt J, Michel A (2008) Andesitic magma degassing investigated through H2O vapour-melt partitioning of halogens at Soufrière Hills Volcano, Montserrat (Lesser Anilles). Earth Planet Sci Lett 269:212–229. https://doi.org/10.1016/j.epsl.2008.02.014

    Article  Google Scholar 

  • von Aulock FW, Kennedy BM, Schipper CI, Castro JM, Martin DE, Oze C, Watkins JM, Wallace PJ, Puskar L, Bégué F, Nichols ARL, Tuffen H (2014) Advances in Fourier transform infrared spectroscopy of natural glasses: from sample preparation to data analysis. Lithos 206-207:52–64. https://doi.org/10.1016/j.lithos.2014.07.017

    Article  Google Scholar 

  • Wardell LJ, Kyle PR, Counce D (2008) Volcanic emissions of metals and halogens from White Island (New Zealand) and Erebus volcano (Antarctica) determined with chemical traps. J Volcanol Geotherm Res 177:734–742. https://doi.org/10.1016/j.jvolgeores.2007.07.007

    Article  Google Scholar 

  • Wardell LJ, Kyle PR, Dunbar N, Christenson B (2001) White Island Volcano, New Zealand: carbon dioxide and sulfur dioxide emission rates and melt inclusion studies. Chem Geol 177:187–200. https://doi.org/10.1016/S0009-2541(00)00391-0

    Article  Google Scholar 

  • Werner C, Hurst T, Scott BJ, Sherburn S, Christenson BW, Britten K, Cole-Baker J, Mullan B (2008) Variability of passive gas emissions, seismicity, and deformation during crater lake growth at White Island Volcano, New Zealand, 2002-2006. J Geophys Res 113:B01204. https://doi.org/10.1029/2007JB005094

    Article  Google Scholar 

  • Zhang YB, Xiao CF, An SL, Liu MT (2012) Hydrofluoric acid corrosion behaviour of SiO2 glass used to prepare glass hollow fibre membrane. Corr Eng Sci Tech 47:456–462. https://doi.org/10.1179/1478422X12Z.00000000057

    Article  Google Scholar 

Download references

Acknowledgements

Australian Synchrotron access was gained from proposal 2016/1-M10503 and supported by the New Zealand Synchrotron Group. CIS acknowledges a VUW faculty strategic research grant 212525/3620, A. Möbis for access to FTIR facilities at Massey University, and the staff of the Otago Centre for Electron Microscopy for their valuable support. We also thank T. Shea and H. Balcone-Boissard for constructive reviews that helped to improve this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ian Schipper.

Additional information

Editorial responsibility: J. Fierstein

Electronic supplementary material

Table S1

(PDF 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ian Schipper, C., Mandon, C., Maksimenko, A. et al. Vapor-phase cristobalite as a durable indicator of magmatic pore structure and halogen degassing: an example from White Island volcano (New Zealand). Bull Volcanol 79, 74 (2017). https://doi.org/10.1007/s00445-017-1157-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-017-1157-1

Keywords

Navigation