Advertisement

Bulletin of Volcanology

, 79:64 | Cite as

A review of mass and energy flow through a lava flow system: insights provided from a non-equilibrium perspective

  • Simone Tarquini
Review Article

Abstract

A simple formula relates lava discharge rate to the heat radiated per unit time from the surface of active lava flows (the “thermal proxy”). Although widely used, the physical basis of this proxy is still debated. In the present contribution, lava flows are approached as open, dissipative systems that, under favorable conditions, can attain a non-equilibrium stationary state. In this system framework, the onset, growth, and demise of lava flow units can be explained as a self-organization phenomenon characterized by a given temporal frequency defined by the average life span of active lava flow units. Here, I review empirical, physical, and experimental models designed to understand and link the flow of mass and energy through a lava flow system, as well as measurements and observations that support a “real-world” view. I set up two systems: active lava flow system (or ALFS) for flowing, fluid lava and a lava deposit system for solidified, cooling lava. The review highlights surprising similarities between lava flows and electric currents, which typically work under stationary conditions. An electric current propagates almost instantaneously through an existing circuit, following the Kirchhoff law (a least dissipation principle). Flowing lavas, in contrast, build up a slow-motion “lava circuit” over days, weeks, or months by following a gravity-driven path down the steepest slopes. Attainment of a steady-state condition is hampered (and the classic thermal proxy does not hold) if the supply stops before completion of the “lava circuit.” Although gravity determines initial flow path and extension, the least dissipation principle means that subsequent evolution of mature portions of the active lava flow system is controlled by increasingly insulated conditions.

Keywords

Mass and energy flow Lava flow Thermal proxy 

Notes

Acknowledgements

The author acknowledges the ESF MeMoVolc grant no. 6409. Many thanks go to Diego Coppola for having provided values for the power radiated by the Mt. Etna 2004–2005 eruption and to several colleagues at INGV Pisa for constructive discussions and support (especially F Mazzarini and A Neri). Insightful reviews by Mike James and two anonymous referees, with additional comments from the special editor Andrew Harris, have substantially helped to improve the paper.

References

  1. Bailey JE, Harris AJL, Dehn J, Calvari S, Rowland SK (2006) The changing morphology of an open lava channel on Mt. Etna. Bull Volcanol 68:497–515CrossRefGoogle Scholar
  2. Barberi F, Brondi F, Carapezza M, Cavarra L, Murgia C (2003) Earthen barriers to control lava flows in the 2001 eruption of Mt. Etna. J Volcanol Geotherm Res 123:231–243CrossRefGoogle Scholar
  3. Bartolini S, Becerril L, Martí J (2014) A new Volcanic managEment Risk Database desIgn (VERDI): application to El Hierro Island (Canary Islands). J Volcanol Geotherm Res 288:132–143. doi: 10.1016/j.jvolgeores.2014.10.009 CrossRefGoogle Scholar
  4. Baloga SM, Glaze LS, Crisp JA, Stockman SA (1998) New statistics for estimating the bulk rheology of active lava flows: Puu Oo examples. J Geophys Res 103:5133–5142CrossRefGoogle Scholar
  5. Baloga SM, Mouginis-Mark PJ, Glaze LS (2003) Rheology of a long lava flow at Pavonis Mons, Mars. J Geophys Res 108(E7):5066. doi: 10.1029/2002JE001981 CrossRefGoogle Scholar
  6. Behncke B, Neri M (2003) The July–August 2001 eruption of Mt. Etna (Sicily). Bull Volcanol 65:461–476CrossRefGoogle Scholar
  7. Behncke B, Fornaciai A, Neri M, Favalli M, Ganci G, Mazzarini F (2016) Lidar surveys reveal eruptive volumes and rates at Etna, 2007–2010. Geophys Res Lett 43:4270–4278CrossRefGoogle Scholar
  8. Bernabeu N, Saramito P, Smutek C (2013) Numerical modeling of non-Newtonian viscoplastic flows: part ii. Viscoplastic fluids and general tridimensional topographies. Int J Numer Anal Model 11:214–229Google Scholar
  9. Bernardi MI, Bertotto GW, Jalowitzki TLR, Orihashi Y, Ponce AD (2015) Emplacement history and inflation evidence of a long basaltic lava flow located in Southern Payenia Volcanic Province, Argentina. J Volcanol Geotherm Res 293:46–56CrossRefGoogle Scholar
  10. Boekhoven J, Hendriksen WE, Koper GJM, Eelkema R, van Esch JH (2015) Transient assembly of active materials fueled by a chemical reaction. Science 349:1075–1079CrossRefGoogle Scholar
  11. Bryan SE, Peate IU, Peate DW, Self S, Jerram DA, Mawby MR, Marsh JSG, Miller JA (2010) The largest volcanic eruptions on Earth. Earth Sci Rev 102:207–229CrossRefGoogle Scholar
  12. Burton MR et al (2005) Etna 2004–2005: an archetype for geodynamically-controlled effusive eruptions. Geophys Res Lett 32:L09303. doi: 10.1029/2005GL022527 CrossRefGoogle Scholar
  13. Calvari S, Pinkerton H (1998) Formation of lava tubes and extensive flow field during the 1991–1993 eruption of Mount Etna. J Geophys Res 103(B11):27291–27301CrossRefGoogle Scholar
  14. Cappello A, Herault A, Bilotta G, Ganci G, Del Negro C (2015) MAGFLOW: a physics-based model for the dynamics of lava flow emplacement. In: AJL H, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling and responding to effusive eruptions. Geological Society, London, Special Publications, p 426. doi: 10.1144/SP426.16 Google Scholar
  15. Cashman KV, Pinkerton H, Stephenson PJ (1998) Introduction to special section: long lava flows. J Geophys Res 103(B11):27281–27289CrossRefGoogle Scholar
  16. Cashman KV, Kerr RC, Griffiths RW (2006) A laboratory model of surface crust formation and disruption on lava flows through non-uniform channels. Bull Volcanol 68:753–770CrossRefGoogle Scholar
  17. Cashman KV, Sparks RSJ (2013) How volcanoes work: a 25 year perspective. Geol Soc Am Bull. doi: 10.1130/B30720.1
  18. Castruccio A, Rust AC, Sparks RSJ (2013) Evolution of crust- and core-dominated lava flows using scaling analysis. Bull Volcanol 75:681. doi: 10.1007/s00445-012-0681-2 CrossRefGoogle Scholar
  19. Cavagna A (2009) Supercooled liquids for pedestrians. Phys Rep 476:51–124. doi: 10.1016/j.physrep.2009.03.003 CrossRefGoogle Scholar
  20. Champion D, Le Meste M, Simatos D (2000) Towards an improved understanding of glass transition and relaxations in foods: molecular mobility in the glass transition range. Trends Food Sci Technol 11:41–55CrossRefGoogle Scholar
  21. Chevrel MO, Platz T, Hauber E, Baratoux D, Lavallée Y, Dingwell DB (2013) Lava flow rheology: a comparison of morphological and petrological methods. Earth Planet Sci Lett 384:109–120CrossRefGoogle Scholar
  22. Coan T (1844) Journey to Mauna Loa. Missionary Herald 40:44–47Google Scholar
  23. Coltelli M, Proietti C, Branca S, Marsella M, Andronico D, Lodato L (2007) Analysis of the 2001 lava flow eruption of Mt. Etna from three-dimensional mapping. J Geophys Res 112(F2)Google Scholar
  24. Coppola D, Piscopo D, Staudacher T, Cigolini C (2009) Lava discharge rate and effusive pattern at Piton de la Fournaise from MODIS data. J Volcanol Geotherm Res 184:174–192CrossRefGoogle Scholar
  25. Coppola D, Laiolo M, Piscopo D, Cigolini C (2013) Rheological control on the radiant density of active lava flows and domes. J Volcanol Geotherm Res 249:39–48CrossRefGoogle Scholar
  26. Coppola D, Laiolo M, Cigolini C, Delle Donne D, Ripepe M (2015) Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system. In: AJL H, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling and responding to effusive eruptions. Geological Society, London, Special Publications, p 426. doi: 10.1144/SP426.5 Google Scholar
  27. Cordonnier B, Lev E, Garel F (2015) Benchmarking lava-flow models. In: AJL H, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling and responding to effusive eruptions. Geological Society, London, Special Publications, p 426. doi: 10.1144/SP426.7 Google Scholar
  28. Costa A, Caricchi L, Bagdassarov N (2009) A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem Geophys Geosyst 10:Q03010. doi: 10.1029/2008GC002138 CrossRefGoogle Scholar
  29. Crisci GM, Avolio MV, Behncke B, D’Ambrosio D, Di Gregorio S, Lupiano V, Neri M, Rongo R, Spataro W (2010) Predicting the impact of lava flows at Mount Etna, Italy. J Geophys Res 115:B04203. doi: 10.1029/2009JB006431 CrossRefGoogle Scholar
  30. Crisp J, Baloga S (1990) A method for estimating eruption rates of planetary lava flows. Icarus 85:512–515CrossRefGoogle Scholar
  31. Danes ZF (1972) Dynamics of lava flows. J Geophys Res 77:1430–1432CrossRefGoogle Scholar
  32. Dietterich HR, Cashman KV (2014) Channel networks within lava flows: formation, evolution, and implications for flow behavior. J Geophys Res. doi: 10.1002/2014JF003103
  33. Dietterich HR, Cashman KV, Rust AC, Lev E (2015) Diverting lava flows in the lab. Nat Geosci 8:494–496CrossRefGoogle Scholar
  34. Dingwell DB (1998) Recent experimental progress in the physical description of silicic magma relevant to explosive volcanism. In: Gilbert JS, RSJ S (eds) The physics of explosive volcanic eruptions, vol 145. Geological Society, London, Special Publication, pp 9–26Google Scholar
  35. Dingwell DB, Webb SL (1989) Structural relaxation in silicate melts and non-newtonian melt rheology in geologic processes. Phys Chem Miner 16:508–516CrossRefGoogle Scholar
  36. Dingwell DB, Webb SL (1990) Relaxation in silicate melts. Eur J Mineral 2:427–449CrossRefGoogle Scholar
  37. Dozier J (1980) Satellite identification of surface radiant temperature fields of subpixel resolution. NOAA Technical Memorandum, NOAA-81021710. National Earth Satellite Service, Washington DCGoogle Scholar
  38. Dragoni M, Bonafede M, Boschi E (1986) Downslope flow models of a Bingham liquid: implications for lava flows. J Volcanol Geotherm Res 30:305–325CrossRefGoogle Scholar
  39. Dragoni M, Tallarico A (2009) Assumptions in the evaluation of lava effusion rates from heat radiation. Geophys Res Lett 36:L08302. doi: 10.1029/2009GL037411 CrossRefGoogle Scholar
  40. Duncan AM, Chester DK, Guest JE (1981) Mount Etna volcano: environmental impact and problems of volcanic prediction. Geogr J 147:164–178. doi: 10.2307/634532 CrossRefGoogle Scholar
  41. Esposti Ongaro T, Cerminara M (2016) Non-equilibrium processes in ash-laden volcanic plumes: new insights from 3D multiphase flow simulations. J Volcanol Geotherm Res 326:127–142. doi: 10.1016/j.jvolgeores.2016.04.004 CrossRefGoogle Scholar
  42. Favalli M, Fornaciai A, Pareschi MT (2009) LIDAR strip adjustment: application to volcanic areas. Geomorphology 111:123–135CrossRefGoogle Scholar
  43. Favalli M, Fornaciai A, Mazzarini F, Harris AJL, Neri M, Behncke B, Pareschi MT, Tarquini S, Boschi E (2010) Evolution of an active lava flow field using a multitemporal LIDAR acquisition. J Geophys Res 115:B11203. doi: 10.1029/2010JB007463 CrossRefGoogle Scholar
  44. Favalli M, Tarquini S, Papale P, Fornaciai A, Boschi E (2012b) Lava flow hazard and risk maps at Mount Cameroon volcano. Bull Volcanol 74:423–439. doi: 10.1007/s00445-011-0540-6 CrossRefGoogle Scholar
  45. Favalli M, Tarquini S, Fornaciai A, Boschi E (2012a) Dispersion index of topographic surfaces. Geomorphology 153-154:169–178. doi: 10.1016/j.geomorph.2012.02.022 CrossRefGoogle Scholar
  46. Flynn LP, Mouginis-Mark PJ (1994) Temperature of an active lava channel from spectral measurements, Kilauea Volcano, Hawaii. Bull Volcanol 56:297–301CrossRefGoogle Scholar
  47. Frazzetta G, Romano R (1984) The 1983 Etna eruption: event chronology and morphological evolution of the lava flow. Bull Volcanol 47:1079–1096CrossRefGoogle Scholar
  48. Friedman JD, Williams RS (1968) Infrared sensing of active geologic processes. Proceedings of the 5th Symposium on Remote Sensing of Environment 787–820Google Scholar
  49. Fujita E, Nagai M (2015) LavaSIM: its physical base and applicability. In: AJL H, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling and responding to effusive eruptions. Geological Society, London, Special Publications, p 426. doi: 10.1144/SP426.14 Google Scholar
  50. Ganci G, Vicari A, Fortuna L, Del Negro C (2011) The HOTSAT volcano monitoring system based on combined use of SEVIRI and MODIS multispectral data. Ann Geophys 54:544–550. doi: 10.4401/ag-5338 Google Scholar
  51. Ganci G, Vicari A, Cappello A, Negro D (2012) An emergent strategy for volcano hazard assessment: from thermal satellite monitoring to lava flow modeling. Remote Sens Environ 119:197–207CrossRefGoogle Scholar
  52. Ganci G, James MR, Calvari S, Del Negro C (2013) Separating the thermal fingerprints of lava flows and simultaneous lava fountaining using ground-based thermal camera and SEVIRI measurements. Geophys Res Lett 40:5058–5063. doi: 10.1002/grl.50983 CrossRefGoogle Scholar
  53. Garel F, Kaminski E, Tait S, Limare A (2012) An experimental study of the surface thermal signature of hot subaerial isoviscous gravity currents: implications for thermal monitoring of lava flows and domes. J Geophys Res 117:B02205. doi: 10.1029/2011JB008698 CrossRefGoogle Scholar
  54. Garel F, Kaminski E, Tait S, Limare A (2014) An analogue study of the influence of solidification on the advance and surface thermal signature of lava flows. Earth Planet Sci Lett 396:46–55CrossRefGoogle Scholar
  55. Garel F, Kaminski E, Tait S, Limare A (2015) A fluid dynamics perspective on the interpretation of the surface thermal signal of lava flows. In: AJL H, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling and responding to effusive eruptions. Geological Society, London, Special Publications, p 426. doi: 10.1144/SP426.6 Google Scholar
  56. Garry WB, Zimbelman JR, Gregg TKP (2007) Morphology and emplacement of a long channeled lava flow near Ascraeus Mons Volcano, Mars. J Geophys Res Planets 112:E08007. doi: 10.1029/2006JE002803 CrossRefGoogle Scholar
  57. Giacomini L, Massironi M, Martellato E, Pasquarè G, Frigeri A, Cremonese G (2009) Inflated flows on Daedalia Planum (Mars)? Clues from a comparative analysis with the Payen volcanic complex (Argentina). Planet Space Sci 57:556–570. doi: 10.1016/j.pss.2008.12.001 CrossRefGoogle Scholar
  58. Giordano D, Russel JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134CrossRefGoogle Scholar
  59. Glansdorff P, Prigogine I (1971) Thermodynamic theory of structure, stability and fluctuations. Wiley, London ISBN 0-471-30280-5Google Scholar
  60. Glaze LS, Baloga SM (1998) Dimensions of Pu’u O’o lava flows on Mars. J Geophys Res 103:13,659–13,666Google Scholar
  61. Glaze LS, Baloga SM, Garry WB, Fagents SA, Parcheta C (2009) A hybrid model for leveed lava flows: implications for eruption styles on Mars. J Geophys Res 114:E07001. doi: 10.1029/2008JE003278 CrossRefGoogle Scholar
  62. Goldbeter A (2002) Computational approaches to cellular rhythms. Nature 420:238–245CrossRefGoogle Scholar
  63. Greeley R (1987) The role of lava tubes in Hawaiian volcanoes. US Geol Surv Prof Pap 1350:1589–1602Google Scholar
  64. Gregg TKP, Fink JH (2000) A laboratory investigation into the effects of slope on lava flow morphology. J Volcanol Geotherm Res 96:145–159CrossRefGoogle Scholar
  65. Gresham D, Hong J (2015) The functional basis of adaptive evolution in chemostats. FEMS Microbiol Rev 39:1–19Google Scholar
  66. Griffiths RW (2000) The dynamics of lava flows. Annu Rev Fluid Mech 32:477–518CrossRefGoogle Scholar
  67. Grosse P, Euillades PA, Euillades LD, van Wyk de Vries B (2014) A global database of composite volcano morphometry. Bull Volcanol 76:784. doi: 10.1007/s00445-013-0784-4 CrossRefGoogle Scholar
  68. Gudmundsson MT et al (2016) Gradual caldera collapse at Bárdarbunga volcano, Iceland, regulated by lateral magma outflow. Science 353. doi: 10.1126/science.aaf8988
  69. Guest JE, Kilburn CRJ, Pinkerton H, Duncan AM (1987) The evolution of lava flow-fields: observations of the 1981 and 1983 eruptions of Mount Etna, Sicily. Bull Volcanol 49:527–540CrossRefGoogle Scholar
  70. Harris AJL (2013) Thermal remote sensing of active volcanoes: a user’s manual. Cambridge ISBN 978-0-521-85945-5Google Scholar
  71. Harris AJL, Rowland SK (2001) FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol 63:20–44CrossRefGoogle Scholar
  72. Harris AJL, Ripepe M (2007) Regional earthquake as a trigger for enhanced volcanic activity: evidence from MODIS thermal data. Geophys Res Lett 34:L02304. doi: 10.1029/2006GL028251 Google Scholar
  73. Harris AJL, Allen JS (2008) One-, two- and three phase viscosity treatments for basaltic lava flows. J Geophys Res Solid Earth 113:B09212. doi: 10.1029/2007JB005035 CrossRefGoogle Scholar
  74. Harris AJL, Baloga SM (2009) Lava discharge rates from satellite-measured heat flux. Geophys Res Lett 36:L19302. doi: 10.1029/2009GL039717 CrossRefGoogle Scholar
  75. Harris AJL, Rowland S (2009) Effusion rate controls on lava flow length and the role of heat loss: a review. In: Thordarson T, Self S, Larsen G, Rowland SK, Hoskuldsson A (eds) Studies in volcanology: the legacy of George Walker. In: Special Publications of IAVCEI pp. 33–51Google Scholar
  76. Harris AJL, Blake S, Rothery DA (1997) A chronology of the 1991 to 1993 Mount Etna eruption using advanced high resolution radiometer data: implications for real-time thermal volcano monitoring. J Geophys Res 102(B4):7985–8003CrossRefGoogle Scholar
  77. Harris A, Flynn L, Keszthelyi L, Mouginis-Mark P, Rowland S, Resing J (1998) Calculation of lava effusion rates from Landsat TM data. Bull Volcanol 60:52–71CrossRefGoogle Scholar
  78. Harris AJL, Bailey J, Calvari S, Dehn J (2005) Heat loss measured at a lava channel and its implications for down-channel cooling and rheology. In: Manga M, Ventura G (eds) Kinematics and dynamics of lava flows: Geological Society of America Special Paper 396, p. 125–146. doi:  10.1130/2005.2396(09)
  79. Harris A, Dehn J, Calvari S (2007a) Lava effusion rate definition and measurement: a review. Bull Volcanol 70:1–22CrossRefGoogle Scholar
  80. Harris AJL, Favalli M, Mazzarini F, Pareschi MT (2007c) Best-fit results from application of a thermo-rheological model for channelized lava flow to high spatial resolution morphological data. Geophys Res Lett 34:L01301. doi: 10.1029/2006GL028126 Google Scholar
  81. Harris AJL, Dehn J, James MR, Hamilton C, Herd R, Lodato L, Steffke A (2007b) Pāhoehoe flow cooling, discharge, and coverage rates from thermal image chronometry. Geophys Res Lett 34:L19303CrossRefGoogle Scholar
  82. Harris AJL, Favalli M, Mazzarini F, Hamilton CW (2009) Construction dynamics of a lava channel. Bull Volcanol 71:459–474CrossRefGoogle Scholar
  83. Harris AJL, Favalli M, Steffke A, Fornaciai A, Boschi E (2010) A relation between lava discharge rate, thermal insulation, and flow area set using lidar data. Geophys Res Lett 37:L20308. doi: 10.1029/2010GL044683 CrossRefGoogle Scholar
  84. Harris AJL, et al. (2016) Conclusion: recommendations and findings of the RED SEED working group. From: Harris AJL, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling and responding to effusive eruptions. Geological Society, London, Special Publications, 426, doi: 10.1144/SP426.11
  85. Harris AJL, Rowland SK, Villeneuve N, Thordarson T (2017) Pāhoehoe, ‘a‘ā, and block lava: an illustrated history of the nomenclature. Bull Volcanol 79:7. doi: 10.1007/s00445-016-1075-7 CrossRefGoogle Scholar
  86. Herdervari P (1963) On the energy and magnitude of volcanic eruptions. Bull Volcanol 25:373–385CrossRefGoogle Scholar
  87. Hoblitt RP, Orr TR, Heliker C, Denlinger RP, Hon K, Cervelli PF (2012) Inflation rates, rifts, and bands in a pāhoehoe sheet flow. Geosphere 8(5):179–195. doi: 10.1130/GES00656.1 CrossRefGoogle Scholar
  88. Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Am Bull 3:351–370CrossRefGoogle Scholar
  89. Hulme G (1974) The interpretation of lava flow morphology. Geophys J R Astron Soc 39:361–383CrossRefGoogle Scholar
  90. Huppert H, Shepherd J, Sigurdsson H, Sparks R (1982) On lava dome growth, with application to the 1979 lava extrusion of the Soufriere of St. Vincent. J Volcanol Geotherm Res 14:199–222CrossRefGoogle Scholar
  91. James MR, Bagdassarov N, Muller K, Pinkerton H (2004) Viscoelastic behavior of basaltic lavas. J Volcanol Geotherm Res 132:99–113CrossRefGoogle Scholar
  92. James MR, Robson S, Pinkerton H, Ball M (2006) Oblique photogrammetry with visible and thermal images of active lava flows. Bull Volcanol 69:105–108. doi: 10.1007/s00445-006-0062-9 CrossRefGoogle Scholar
  93. James MR, Pinkerton H, Robson S (2007) Image based measurement of flux variation in distal regions of active lava flows. Geochem Geophys Geosyst 8:Q03006. doi: 10.1029/2006GC001448 CrossRefGoogle Scholar
  94. James MR, Pinkerton H, Applegarth LJ (2009) Detecting the development of active lava flow fields with a very-long-range terrestrial laser scanner and thermal imagery. Geophys Res Lett 36:L22305. doi: 10.1029/2009GL040701 CrossRefGoogle Scholar
  95. James MR, Applegarth LJ, Pinkerton H (2012) Lava channel roofing, overflows, breaches and switching: insights from the 2008–2009 eruption of Mt. Etna. Bull Volcanol 74:107–117CrossRefGoogle Scholar
  96. Jaynes ET (1980) The minimum entropy production principle. Annu Rev Phys Chem 31:579–601CrossRefGoogle Scholar
  97. Jones JG (1968) Pillow lava and pahoehoe. J Geol 76:485–488CrossRefGoogle Scholar
  98. Karátson D, Favalli M, Tarquini S, Fornaciai A, Wörner G (2010) The regular shape of stratovolcanoes: a DEM-based morphometrical approach. J Volcanol Geotherm Res 193:171–181. doi: 10.1016/j.jvolgeores.2010.03.012 CrossRefGoogle Scholar
  99. Kauahikaua J, Cashman KV, Mattox TN, Heliker CC, Hon KA, Mangan MT, Thornber CR (1998) Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawai’i. J Geophys Res 103(B11):27,303–27,323CrossRefGoogle Scholar
  100. Kelfoun K, Vargas SV (2016) VolcFlow capabilities and potential development for the simulation of lava flows. From: Harris AJL, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling and responding to effusive eruptions. Geological Society, London, Special Publications, 426, doi: 10.1144/SP426.8
  101. Kereszturi G, Németh K, Moufti MR, Cappello A, Murcia H, Ganci G, Del Negro C, Procter J, Zahran HMA (2016) Emplacement conditions of the 1256AD Al-Madinah lava flow field in Harrat Rahat, Kingdom of Saudi Arabia—insights from surface morphology and lava flow simulations. J Volcanol Geotherm Res 309:14–30CrossRefGoogle Scholar
  102. Kerr RC, Griffiths RW, Cashman KV (2006) Formation of channelized lava flows on an unconfined slope. J Geophys Res 111:B10206. doi: 10.1029/2005JB004225 CrossRefGoogle Scholar
  103. Keszthelyi L (1995a) Measurements of cooling at the base of pahoehoe flows. Geophys Res Lett 22:2195–2198CrossRefGoogle Scholar
  104. Keszthelyi L (1995b) A preliminary thermal budget for lava tubes on Earth and planets. J Geophys Res 100:20,411–20,420CrossRefGoogle Scholar
  105. Keszthelyi LP, Pieri DC (1993) Emplacement of the 75-kmlong Carrizozo lava flow field, south-central New Mexico. J Volcanol Geotherm Res 59:59–75CrossRefGoogle Scholar
  106. Keszthelyi L, Denlinger R (1996) The initial cooling of pahoehoe flow lobes. Bull Volcanol 58:5–18CrossRefGoogle Scholar
  107. Keszthelyi L, Thordarson T, McEwen A, Haack H, Guilbaud M-N, Self S, Rossi MJ (2004) Icelandic analogs to Martian flood lavas. Geochem Geophys Geosyst 5:Q11014. doi: 10.1029/2004GC000758 CrossRefGoogle Scholar
  108. Keszthelyi L, Self S, Thordarson T (2006) Flood lavas on Earth, Io and Mars. J Geol Soc 163(2):253–264CrossRefGoogle Scholar
  109. Kilburn CRJ (1996) Patterns and predictability in the emplacement of subaerial lava flows and flow fields. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin, pp 491–537. doi: 10.1007/978-3-642-80087-0_15 CrossRefGoogle Scholar
  110. Kilburn CRJ (2000) Lava flows and flow fields. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, CA, pp 291–306Google Scholar
  111. Kilburn CRJ, Lopes R (1988) The growth of aa lava flow fields on Mount Etna, Sicily. J Geophys Res Solid Earth 93:14759–14772CrossRefGoogle Scholar
  112. Kilburn CRJ, Lopes R (1991) General patterns of flow field growth: Aa and blocky lavas. J Geophys Res Solid Earth 96:19721–19732CrossRefGoogle Scholar
  113. Kirchhoff GD (1848) Ueber die anwendbarkeit der formeln fur die intensitaten der galvanischen strome in einem systeme lencarer leiter auf systeme, die zum theil nicht aus linearen leitern bestehen. Ann Phys 75:189–205CrossRefGoogle Scholar
  114. Kleidon A. (2010) Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering SciencesGoogle Scholar
  115. Kolzenburg S, Giordano D, Cimarelli C, Dingwell DB (2016) In situ thermal characterization of cooling/crystallizing lavas during rheology measurements and implications for lava flow emplacement. Geochim Cosmochim Acta 195:244–258CrossRefGoogle Scholar
  116. Kolzenburg S, Giordano D, Thordarson T, Höskuldsson A, Dingwell DB (2017) The rheological evolution of the 2014/2015 eruption at Holuhraun, central Iceland. Bull Volcanol 79:45. doi: 10.1007/s00445-017-1128-6 CrossRefGoogle Scholar
  117. La Spina G, Burton M, de’ Michieli Vitturi M, Arzilli F (2016) Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics. Nat Commun 7:13402. doi: 10.1038/ncomms13402 CrossRefGoogle Scholar
  118. Larini L, Ottochian A, De Michele C, Leporini D (2008) Universal scaling between structural relaxation and vibrational dynamics in glass-forming liquids and polymers. Nat Phys 4:42–45Google Scholar
  119. Lipman PW, Banks NG (1987) Aa flow dynamics, Mauna Loa. In: Decker W, Wright TL, Stauffer PH (eds) Volcanism in Hawaii. US Geol Surv prof paper no. 1350, pp 1527–1567Google Scholar
  120. Lockwood JP, Hazlett RW (2010) Volcanoes global perspectives. Wiley-BlackwellGoogle Scholar
  121. Lombardo V, Harris AJL, Calvari S, Buongiorno MF (2009) Spatial variations in lava flow field thermal structure and effusion rate derived from high spatial resolution hyperspectral (MIVIS) data. J Geophys Res 114:B02208. doi: 10.1029/2008JB005648 CrossRefGoogle Scholar
  122. Lombardo V (2016) Influence of pre-existing topography on downflow lava discharge rates estimated from thermal infrared airborne data. Geophys J Int 205:122–133. doi: 10.1093/gji/ggv557 CrossRefGoogle Scholar
  123. Malin MC (1980) Lengths of Hawaiian lava flows. Geology 8:306–308CrossRefGoogle Scholar
  124. Mastin LG, Ghiorso MS (2001) Adiabatic temperature changes of magma-gas mixtures during ascent and eruption. Contrib Mineral Petrol 141:307–321CrossRefGoogle Scholar
  125. Mattox TN, Heliker C, Kauahikaua J, Hon K (1993) Development of the 1990 Kalapana flow field, Kilauea Volcano, Hawaii. Bull Volcanol 55:407–413. doi: 10.1007/BF00302000
  126. Mazzarini F, Pareschi MT, Favalli M, Isola I, Tarquini S, Boschi E (2005) Morphology of basaltic lava channels during the Mt. Etna September 2004 eruption from airborne laser altimeter data. Geophys Res Lett 32:L04305CrossRefGoogle Scholar
  127. McCabe MF, Balick LK, Theiler J, Gillespie AR, Mushkin A (2008) Linear mixing in thermal infrared temperature retrieval. Int J Remote Sens 29:5047–5061CrossRefGoogle Scholar
  128. Miyamoto H, Papp KR (2004) Rheology and topography control the path of a lava flow: insight from numerical simulations over a preexisting topography. Geophys Res Lett 31:L166085. doi: 10.1029/2004GL020626 Google Scholar
  129. Moore JG (1975) Mechanism of formation of pillow lava. Am Sci 63:269–277Google Scholar
  130. Moore JG, Cristofolini R, Lo Giudice A (1971) Development of pillows on the submarine extension of recent lava flows, Mount Etna, Sicily US Geol Surv Prof Paper no 750-C, pp C89–C97Google Scholar
  131. Moore HJ (1987) Preliminary estimates of the rheological properties of 1984 Mauna Loa lava. In: Decker RW et al. (ed) Volcanism in Hawaii, in US Geol Surv Prof Pap 1350:1569–1588Google Scholar
  132. Mossoux S, Saey M, Bartolini S, Poppe S, Canters F, Kervyn M (2016) Q-LAVHA: a flexible GIS plugin to simulate lava flows. Comput Geosci 97:98–109. doi: 10.1016/j.cageo.2016.09.003 CrossRefGoogle Scholar
  133. Murcia H, Németh K, Moufti MR, Lindsay JM, El-Masry N, Cronin SJ, Qaddah A, Smith IEM (2014) Late Holocene lava flow morphotypes of northern Harrat Rahat, Kingdom of Saudi Arabia: implications for the description of continental lava fields. J Asian Earth Sci 84:131–145. doi: 10.1016/j.jseaes.2013.10.002 CrossRefGoogle Scholar
  134. Németh K, Haller MJ, Martin U, Risso C, Massaferro G (2008) Morphology of lava tumuli from Mendoza (Argentina), Patagonia (Argentina), and Al-Haruj (Libya). Z Geomorphol 52:181–194. doi: 10.1127/0372-8854/2008/0052-0181 CrossRefGoogle Scholar
  135. Nichols RL (1936) Flow-units in basalt. J Geol 44:617–630CrossRefGoogle Scholar
  136. Ohm GS (1827) Die Galvanische Kette, Mathematisch Bearbeitet 250. Kessinger Google Scholar
  137. Oppenheimer C (1993) Thermal distributions of hot volcanic surfaces constrained using three infrared bands of remote sensing data. Geophys Res Lett 20:431–434CrossRefGoogle Scholar
  138. Ottochian A, De Michele C, Puosi F, Leporini D (2012) Disordered systems: predicting the ultra-slow processes by picosecond dynamics. Il Nuovo Saggiatore 28:5–10Google Scholar
  139. Patrick M, Dehn J, Dean K (2004) Numerical modeling of lava flow cooling applied to the 1997 Okmok eruption: approach and analysis. J Geophys Res 109:B03202. doi: 10.1029/2003JB002537 CrossRefGoogle Scholar
  140. Patrick MR, Orr T, Wilson D, Dow D, Freeman R (2011) Cyclic spattering, seismic tremor, and surface fluctuation within a perched lava channel, Kīlauea Volcano. Bulletin of volcanology 73:639–653.Google Scholar
  141. Park S, Iversen JD (1984) Dynamics of lava flow: thickness growth characteristics of steady two-dimensional flow. Geophys Res Lett 11:641–644CrossRefGoogle Scholar
  142. Pedersen GBM, Grosse P (2014) Morphometry of subaerial shield volcanoes and glaciovolcanoes from Reykjanes Peninsula, Iceland: effects of eruption environment. J Volcanol Geotherm Res 282:115–133CrossRefGoogle Scholar
  143. Pedersen GBM et al, the IES eruption team (2017) Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2017.02.027
  144. Peterson DW, Holcomb RT, Tilling RI, Christiansen RL (1994) Development of lava tubes in the light of observations at Mauna Ulu, Kilauea Volcano, Hawaii. Bull Volcanol 56:343–360CrossRefGoogle Scholar
  145. Pieri DC, Baloga SM (1986) Eruption rate, area, and length relationships for some Hawaiian lava flows. J Volcanol Geotherm Res 30:29–45Google Scholar
  146. Pinkerton H, Wilson L (1994) Factors controlling the lengths of channel-fed lava flows. Bull Volcanol 56:108–120CrossRefGoogle Scholar
  147. Pistone M, Caricchi L et al (2012) Deformation experiments of bubble- and crystal-bearing magmas: rheological and microstructural analysis. J Geophys Res 117:B05208. doi: 10.1029/2011JB008986 CrossRefGoogle Scholar
  148. Poland MP (2014) Time-averaged discharge rate of subaerial lava at Kīlauea Volcano, Hawai’i, measured from TanDEM-X interferometry: implications for magma supply and storage during 2011–2013. J Geophys Res 119:5464–5481. doi: 10.1002/2014JB011132 CrossRefGoogle Scholar
  149. Ramsey MS, Harris AJL (2012) Volcanology 2020: how will thermal remote sensing of volcanic surface activity evolve over the next decade? J Volcanol Geotherm Res 249:217–233CrossRefGoogle Scholar
  150. Richter N, Favalli M, de Zeeuw-van Dalfsen E, Fornaciai A, da Silva Fernandes RN, Perez Rodriguez N, Levy J, Silva Victória S, Walter TR (2016) Lava flow hazard at Fogo Volcano, Cape Verde, before and after the 2014-2015 eruption. Nat Hazards Earth Syst Sci Discuss. doi: 10.5194/nhess-2016-81
  151. Robertson JC, Kerr RC (2010) Rheological controls on the dynamics of channeled lava flows. 17th Australasian Fluid Mechanics Conference Auckland, New Zealand 5-9 December 2010Google Scholar
  152. Robertson JC, Kerr RC (2012a) Isothermal dynamics of channeled viscoplastic lava flows and new methods for estimating lava rheology. J Geophys Res 117:B01202. doi: 10.1029/2011JB008550 intro Google Scholar
  153. Robertson JC, Kerr RC (2012b) Solidification dynamics in channeled viscoplastic lava flows. J Geophys Res 117:B07206. doi: 10.1029/2012JB009163 Google Scholar
  154. Rothery DA, Francis PW, Wood CA (1988) Volcano monitoring using short wavelength infrared data from satellites. J Geophys Res 93:7993–8008CrossRefGoogle Scholar
  155. Rowland SK, Harris AJL, Garbeil H (2004) Effects of Martian conditions on numerically modeled, cooling-limited, channelized lava flows. J Geophys Res 109:E10010. doi: 10.1029/2004JE002288 CrossRefGoogle Scholar
  156. Rowland SK, Garbeil H, Harris AJL (2005) Lengths and hazards from channel-fed lava flows on Mauna Loa, Hawai ’i, determined from thermal and downslope modeling with FLOWGO. Bull Volcanol 67:634–647. doi: 10.1007/s00445-004-0399-x CrossRefGoogle Scholar
  157. Scandone R, (1979) Effusion rate and energy balance of Paricutin eruption (1943–1952), Michoacan, Mexico. Journal of Volcanology and Geothermal Research 6:49–59Google Scholar
  158. Self S, Thordarson T, Keszthelyi L, Walker GPL, Hon K, Murphy MT, Long P, Finnemore S (1996) A new model for the emplacement of Columbia River basalts as large, inflated pahoehoe lava flow fields. Geophys Res Lett 23:2689–2692CrossRefGoogle Scholar
  159. Self S, Thordarson T, Keszthelyi L (1997) Emplacement of continental flood basalt lava flows. Large Igneous Provinces: continental, oceanic, and planetary flood volcanism, 381–410Google Scholar
  160. Self S, Keszthelyi L, Thordarson T (1998) The importance of pahoehoe. Annu Rev Earth Planet Sci 26:81–110CrossRefGoogle Scholar
  161. Solana MC, Kilburn CRJ, Rodriguez Badiola E, Aparicio A (2004) Fast emplacement of extensive pahoehoe flow-fields: the case of the 1736 flows from Montana de las Nueces, Lanzarote. J Volcanol Geotherm Res 132:189–207CrossRefGoogle Scholar
  162. Sparks RSJ, Pinkerton H, Hulme G (1976) Classification and formation of lava levee on Mount Etna Sicily. Geology 4:269–271CrossRefGoogle Scholar
  163. Stephenson PJ, Burch-Johnston AT, Stanton D, Whitehead PW (1998) Three long lava flows in north Queensland. J Geophys Res 103:27,359–27,370CrossRefGoogle Scholar
  164. Stevens NF, Murray JB, Wadge G (1997) The volume and shape of the 1991–1993 lava flow field at Mount Etna, Sicily. Bull Volcanol 58:449–454CrossRefGoogle Scholar
  165. Tarquini S, de’ Michieli Vitturi M (2014) Influence of fluctuating supply on the emplacement dynamics of channelized lava flows. Bull Volcanol 76:801. doi: 10.1007/s00445-014-0801-2 CrossRefGoogle Scholar
  166. Tarquini S, Favalli M (2010) Changes of the susceptibility to lava flow invasion induced by morphological modifications of an active volcano: the case of Mount Etna, Italy. Nat Hazards 54:537–546CrossRefGoogle Scholar
  167. Tarquini S, Favalli M (2011) Mapping and DOWNFLOW simulation of recent lava flow fields at Mount Etna. J Volcanol Geotherm Res 204:27–39. doi: 10.1016/j.jvolgeores.2011.05.001 CrossRefGoogle Scholar
  168. Tarquini S, Favalli M (2013) Uncertainties in lava flow hazard maps derived from numerical simulations: the case study of Mount Etna. J Volcanol Geotherm Res 260:90–102. doi: 10.1016/j.jvolgeores.2013.04.01 CrossRefGoogle Scholar
  169. Tarquini S, Favalli M (2015) Simulating the area covered by lava flows using the DOWNFLOW code. In: AJL H, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling and responding to effusive eruptions. Geological Society, London, Special Publications, p 426. doi: 10.1144/SP426.15 Google Scholar
  170. Tarquini S, Favalli M, Mazzarini F, Isola I, Fornaciai A (2012a) Morphometric analysis of lava flow units: case study over LIDAR-derived topography at Mount Etna, Italy. J Volcanol Geotherm Res 235–236:11–22CrossRefGoogle Scholar
  171. Tarquini S, Vinci S, Favalli M, Doumaz F, Fornaciai A, Nannipieri L (2012b) Release of a 10-m-resolution DEM for the Italian territory: comparison with global-coverage DEMs and anaglyph-mode exploration via the web. Comput Geosci 38:168–170. doi: 10.1016/j.cageo.2011.04.018 CrossRefGoogle Scholar
  172. Thordarson T, Self S (1998) The Roza Member, Columbia River Basalt Group: a gigantic pahoehoe lava flow field formed by endogenous processes? J Geophys Res 103(Bll):27,411–27,445CrossRefGoogle Scholar
  173. Valerio A, Tallarico A, Dragoni M (2008) Mechanisms of formation of lava tubes. J Geophys Res 113:B08209. doi: 10.1029/2007JB005435 CrossRefGoogle Scholar
  174. Valerio A, Tallarico A, Dragoni M (2010) A model for the formation of lava tubes by the growth of the crust from the levees. J Geophys Res 115:B09208. doi: 10.1029/2009JB006598 CrossRefGoogle Scholar
  175. Vicari A, Ciraudo A, Del Negro C, Herault A, Fortuna L (2009) Lava flow simulations using discharge rates from thermal infrared satellite imagery during the 2006 Etna eruption. Nat Hazards 50:539–550CrossRefGoogle Scholar
  176. Vona A, Romano C, Dingwell DB, Giordano D (2011) The rheology of crystal-bearing basaltic magmas from Stromboli and Etna. Geochim Cosmochim Acta 75:3214–3236. doi: 10.1016/j.gca.2011.03.031 CrossRefGoogle Scholar
  177. Vye-Brown C, Self S, Barry TL (2013) Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA. Bull Volcanol 75:697. doi: 10.1007/s00445-013-0697-2 CrossRefGoogle Scholar
  178. Wadge G (1978) Effusion rate and the shape of aa lava flow-fields on Mount Etna. Geology 6:503–506CrossRefGoogle Scholar
  179. Wadge G (1981) The variation of magma discharge during basaltic eruptions. J Volcanol Geotherm Res 2-4:139–168CrossRefGoogle Scholar
  180. Wadge G, Cole P, Stinton A, Komorowski J-C, Stewart R, Toombs AC (2011) Rapid topographic change measured by high resolution satellite radar at Soufriere Hills Volcano, Montserrat 2008–2010. J Volcanol Geotherm Res 199:142–152. doi: 10.1016/j.jvolgeores.2010.10.011 CrossRefGoogle Scholar
  181. Wadge G, Saunders S, Itikarai I (2012) Pulsatory andesite lava flow at Bagana Volcano. Geochem Geophys Geosyst 13:Q11011. doi: 10.1029/2012GC004336 CrossRefGoogle Scholar
  182. Walgraef D (1996) Spatio-temporal pattern formation with examples from physics, chemistry, and material science. Springer, New YorkGoogle Scholar
  183. Walker GPL (1971) Compound and simple lava flows and flood basalts. Bull Volcanol 35:579–590CrossRefGoogle Scholar
  184. Walker GPL (1973) Lengths of lava flows. Philos Trans R Soc Lond A Math Phys Eng Sci 274:107–118CrossRefGoogle Scholar
  185. Walker GPL (1992) Morphometric study of pillow-size spectrum among pillow lavas. Bull Volcanol 54:459–474CrossRefGoogle Scholar
  186. Wilson L, Pinkerton H, Head JW, Roberts KM (1993) A classification scheme for the morphology of lava flow fields. Lunar Planet Sci XXIV:123–124Google Scholar
  187. Wooster M, Wright R, Blake S, Rothery D (1997) Cooling mechanisms and an approximate thermal budget for the 1991–1993 Mount Etna lava flow. Geophys Res Lett 24:3277–3280CrossRefGoogle Scholar
  188. Wright R, Blake S, Harris AJL, Rothery DA (2001) A simple explanation for the space-based calculation of lava eruption rates. Earth Planet Sci Lett 192:223–233CrossRefGoogle Scholar
  189. Wright R, Garbeil H, Davies AG (2010) Cooling rate of some active lavas determined using an orbital imaging spectrometer. J Geophys Res 115:B06205. doi: 10.1029/2009JB006536 Google Scholar
  190. Yokoyama I (1957) Energetics in active volcanoes. 2nd paper. Bull Earthquake Res Inst 35:75–97Google Scholar
  191. Zimbelman JR (1998) Emplacement of long lava flows on planetary surfaces. J Geophys Res 103(B11):27,503–27,516CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Istituto Nazionale di Geofisica e Vulcanologia - Sezione di PisaPisaItaly

Personalised recommendations