Advertisement

New findings of Late Glacial Etna pumice fall deposits in NE Sicily and implications for distal tephra correlations in the Mediterranean area

  • Paola Del Carlo
  • Stefano Branca
  • Claudia D’Oriano
Research Article

Abstract

Pumice fall deposits found in the Nebrodi Mountains and along the Alcantara River, close to the town of Randazzo (NE Sicily), have been studied to derive information about their volcanic source and age. The geochemical Na-alkaline affinity of juvenile products, benmoreite to trachyte, clearly indicates they originated from Etna volcano (Sicily). Major (EMPA) and trace (LA-ICP-MS) element compositional data on matrix glasses indicate that the investigated deposits have a compositional affinity consistent with the tephra deposits of unit D produced by the Ellittico caldera-forming eruptions between ca. 17 and 19 cal ka BP. Furthermore, their compositions correspond to the distal tephra equivalent found in some lacustrine and marine cores in Central Italy (Y-1, TM-11), Tyrrhenian Sea (Et-1; MD10α) and Adriatic Sea (Pal94-66-358; Pal94-8-353). We applied the principal components analysis (PCA), a statistical tool able to reduce the variability of a complex system, to compare the compositions of the proximal samples with the possible distal counterparts found in drill cores of the Mediterranean area. On the basis of northward dispersal of the studied deposits and their geochemical features, we suggest they represent a previously unreported sub-Plinian/Plinian eruption of Ellittico volcano producing medial-distal pumice fall deposits in the Nebrodi Mountains and close to Randazzo, named here the D1c layer. The discovery of these deposits helps solve the problem of distal correlations of the northerly dispersed tephra from Etna related to unit D, for which no definitive attribution with proximal units was given in previous studies. The results presented here add to the knowledge of the eruptive history of the volcano and contribute to expanding the proximal geochemical glass dataset for distal tephra correlation in the Mediterranean region during the Late Glacial period.

Keywords

Etna Ellittico volcano Explosive eruptions Tephra Y-1 

Notes

Acknowledgements

We would like to express our gratitude particularly to G. Lanzafame for indicating the location of the deposits at Randazzo and Polverello P1 sites. E. Braschi and A. Orlando are kindly acknowledged for their assistance with the microprobe analyses at CNR-IGG laboratory in Florence. We would like to thank the Executive Editor J.D.L. White, the Editor L. Capra, F. Lucchi, G. Groppelli and two anonymous referees for their thorough review and constructive comments that greatly improved the manuscript.

Supplementary material

445_2017_1135_MOESM1_ESM.docx (15 kb)
Online resource 1 Coordinates of stratigraphic sections. (DOCX 15 kb)
445_2017_1135_MOESM2_ESM.docx (17 kb)
Online resource 2 Table of parameters of the sieving analyses. (DOCX 16 kb)
445_2017_1135_MOESM3_ESM.xlsx (86 kb)
Online resource 3 Major, minor and trace elements bulk-rock and glass compositions of the studied pumice deposits. (XLSX 86 kb)
445_2017_1135_MOESM4_ESM.docx (18 kb)
Online resource 4 Results of the PCA statistical analysis. (DOCX 18 kb)

References

  1. Albert PG, Tomlinson E, Lane CS, Wulf S, Smith VC, Coltelli M, Keller J, Lo Castro D, Manning CJ, Müller W, Menzies MA (2013) Late glacial explosive activity on Mount Etna: implications for proximal-distal tephra correlations and the synchronization of Mediterranean archives. J Volcanol Geotherm Res 265:9–26CrossRefGoogle Scholar
  2. Branca S, Del Carlo P (2005) Types of eruptions of Etna volcano AD 1670-2003: implications for short-term eruptive behavior. Bull Volcanol 67:732–742CrossRefGoogle Scholar
  3. Branca S, Coltelli M, Groppelli G, Lentini F (2011a) Geological map of Etna volcano, 1:50,000 scale. Ital J Geosci 130(3):265–291. doi: 10.3301/IJG.2011.15 Google Scholar
  4. Branca S, Coltelli M, Groppelli G (2011b) Geological evolution of a complex basaltic stratovolcano: Mount Etna, Italy. Ital J Geosci 130(3):306–317. doi: 10.3301/IJG.2011.13 Google Scholar
  5. Bronk Ramsey C, Albert P, Hardiman M, Housley RA, Lane CS, Lee S, Matthews IP, Smith VC, Lowe J (2015) Improved age estimates for key Late Quaternary European tephra horizons in the RESET lattice. Quat Sci rev 118:18–32CrossRefGoogle Scholar
  6. Calanchi N, Cattaneo A, Dinelli E, Gasparotto G, Lucchini F (1998) Tephra layers in Late Quaternary sediments of the central Adriatic Sea. Mar Geol 149:191–209CrossRefGoogle Scholar
  7. Cioni R, Marianelli P, Santacroce R, Sbrana A (2000) Plinian and sub-Plinian eruptions. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, New York, pp 477–494Google Scholar
  8. Coltelli M, Del Carlo P, Vezzoli L (2000) Stratigraphic constrains for the explosive activity in the last 100 ka at Etna volcano, Italy. Int J Earth Sci 89:665–677CrossRefGoogle Scholar
  9. Corsaro RA, Pompilio M (2004) Dynamics of magmas at Mount Etna. In: Bonaccorso A, Calvari S, Coltelli M, Del Negro C, Falsaperla S (eds) Mt. Etna Volcano Laboratory. AGU (Geophysical monographseries) 143, pp 91–110Google Scholar
  10. Davis JC (1986) Statistics and data analysis in geology, second edn. Wiley, New YorkGoogle Scholar
  11. De Beni E, Branca S, Coltelli M, Groppelli G, Wijbrans J (2011) 39Ar/40Ar isotopic dating of Etna volcanic succession. Ital J Geosci 130(3):292–305. doi: 10.3301/IJG.2011.14 Google Scholar
  12. De Rita D, Frazzetta G, Romano R (1991) The Biancavilla–Montalto ignimbrite (Etna, Sicily). Bull Volcanol 53:121–131CrossRefGoogle Scholar
  13. Douka K, Jacobs Z, Lane C, Grün R, Farr L, Hunt C, Inglis RH, Reynolds T, Albert P, Aubert M, Cullen V, Hill E, Kinsley L, Roberts RG, Tomlinson EL, Wulf S, Barker G (2014) The chronostratigraphy of the Haua Fteah cave (Cyrenaica, northeast Libya). J Hum Evol 66:39–63CrossRefGoogle Scholar
  14. Finetti IR, Lentini F, Carbone S, Del Ben A, Di Stefano A, Forlin E, Guarnieri P, Pipan M, Prizzona A (2005) Geological outline of Sicily and lithospheric tectono-dynamics of its Tyrrhenian Margin from new CROP seismic data. In: Finetti IR (ed) CROP Deep Seismic exploration of the Mediterranean Region Special Volume. Elsevier, pp 319–376Google Scholar
  15. Groppelli G, Norini G (2011) Geology and tectonics of the southwestern boundary of the unstable sector of Mt. Etna (Italy). J Volcanol Geotherm Res 208:66–75CrossRefGoogle Scholar
  16. Insinga DD, Tamburrino S, Lirer F, Vezzoli L, Barra M, De Lange GJ, Tiepolo M, Vallefuoco M, Mazzola S, Sprovieri M (2014) Tephrochronology of the astronomically-tuned KC01B deep-seacore, Ionian Sea: insights into the explosive activity of the Central Mediterranean area during the last 200 ka. Quat Sci rev 85:63–84. doi: 10.1016/j.quascirev.2013.11.019 CrossRefGoogle Scholar
  17. Keller J (2006) The Ionian Sea tephrochronology archive for major paroxysms in Italian explosive volcanism of the upper Quaternary. Workshop CNR-AIQUA, Roma, pp 21–23Google Scholar
  18. Keller J, Ryan WBF, Ninkovich D, Altherr R (1978) Explosive volcanic activity in the Mediterranean over the past 200,000 yr as recorded in deep-sea sediments. Geol Soc Am Bull 89:591–604CrossRefGoogle Scholar
  19. Kieffer G (1979) L’activité de l’Etna pendant les dernières 20000 ans. C R Acad Sci Paris 288D:1023–1026Google Scholar
  20. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750CrossRefGoogle Scholar
  21. Leicher N, Zanchetta G, Sulpizio R, Giaccio B, Wagner B, Nomade S, Francke A, Del Carlo P (2016) First tephrostratigraphic results of the DEEP site record from Lake Ohrid (Macedonia and Albania). Biogeosciences 13:2151–2178. doi: 10.5194/bg-13-2151-2016 CrossRefGoogle Scholar
  22. Micallef A, Georgiopouloub A, Mountjoy J, Huvenne VAI, Lo Iacono C, Le Bas T, Del Carlo P, Cunarro Otero D (2016) Outer shelf seafloor geomorphology along a carbonate escarpment: the eastern Malta plateau, Mediterranean Sea. Cont Shelf Res 131:12–27. doi: 10.1016/j.csr.2016.11.002 CrossRefGoogle Scholar
  23. Paterne M, Guichard F, Labeyrie J (1988) Explosive activity of the south Italian volcanoes during the past 80,000 years as determined by marine tephrochronology. J Volcanol Geotherm Res 34:153–172CrossRefGoogle Scholar
  24. Paterne M, Guichard F, Duplessy JC, Siani G, Sulpizio R, Labeyrie J (2008) A 90,000–200,000 yrs marine tephra record of Italian volcanic activity in the Central Mediterranean Sea. J Volcanol Geotherm Res 177:187–196CrossRefGoogle Scholar
  25. Pearce NJG, Perkins WT, Westgate JA, Wade SC (2011) Trace-element microanalysis by LA-ICP-MS: the quest for the comprehensive chemical characterisation of single, sun-10 micron volcanic glass shards. Quat Int 264:57–81CrossRefGoogle Scholar
  26. Peccerillo A, De Astis G, Faraone D, Forni F, Frezzotti ML (2013) Compositional variations of magma in the Aeolian arc: implications for petrogenenesis and geodynamics. In: The Aeolian Islands Volcanoes, Lucchi F, Peccerillo A, Keller J, Tranne CA, Rossi PL (eds) Geological Society Memoir, 37, The Geological Society, London, pp 491–510Google Scholar
  27. Pouchou JL, Pichoir F (1987) Basic expressions of PAP computation for quantitative EPMA, Proceedings of ICXOM 11, Ontario, August 1987, pp 249–253Google Scholar
  28. Ramrath A, Zolitschka B, Wulf S, Negendank J (1999) Late Pleistocene climatic variations as recorded in two Italian maar lakes (Lago di Mezzano, Lago Grande di Monticchio). Quat Sci Rev 18:997–992. doi: 10.1016/S0277-3791(99)00009-8 CrossRefGoogle Scholar
  29. Siani G, Paterne M, Michel E, Sulpizio R, Sbrana A, Arnold M, Haddad G (2001) Mediterranean Sea surface radiocarbon reservoir age changes since the last glacial maximum. Science 294:1917CrossRefGoogle Scholar
  30. Siani G, Sulpizio R, Paterne M, Sbrana A (2004) Tephrostratigraphy study for the last 18,000 14C years in a deep-sea sediment sequence for the south Adriatic. Quat Sci Rev 23:2485–2500CrossRefGoogle Scholar
  31. Sulpizio R, Zanchetta G, D’Orazio M, Vogel H, Wagner B (2010) Tephrostratigraphy and tephrochronology of lakes Ohrid and Prespa, Balkans. Biogeosciences 7:3273–3288. doi: 10.5194/bgd-7-1-2010 CrossRefGoogle Scholar
  32. Sun SS, McDonough WF (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry, MJ (eds) Magmatism in the ocean basins. Geological Society Special Publication 42, pp 313–345Google Scholar
  33. Tamburrino S, Insinga D, Pelosi N, Kissel C, Laj C, Capotondi L, Sprovieri M (2016) Tephrochronology of a ∼70 ka-long marine record in the Marsili Basin (southern Tyrrhenian Sea). J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2016.07.002
  34. Tomlinson EL, Smith VC, Albert PG, Aydar E, Civetta L, Cioni R, Çubukçu E, Gertisser R, Isaia R, Menzies MA, Orsi R, Rosi M, Zanchetta G (2015) The major and trace element glass compositions of the productive Mediterranean volcanic sources: tools for correlating distal tephra layers in and around Europe. Quat Sci Rev 118:48–66CrossRefGoogle Scholar
  35. Van Achterberg E, Ryan CG, Jackson SE, Griffin WL (2001) Data reduction software for LA-ICPMS: appendix. In: Sylvester PJ (ed) Laser ablation-ICP-mass spectrometry in the earth sciences: principles and applications. Mineralogical Association of Canada, Short Course Series, vol 29, pp 239–243Google Scholar
  36. Vezzoli L (1991) Tephra layers in the Bannock Basin (eastern Mediterranean). Mar Geol 100:21–34CrossRefGoogle Scholar
  37. Walker GPL (1971) Grain-size characteristics of pyroclastic deposits. J Geol 79:696–714CrossRefGoogle Scholar
  38. Walker GPL (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rundsch 62:431–446CrossRefGoogle Scholar
  39. Wulf S, Kraml M, Brauer A, Keller J, Negendank JFW (2004) Tephrochronology of the 100 ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quat Int 122:7–30CrossRefGoogle Scholar
  40. Wulf S, Kraml M, Keller J (2008) Towards a detailed distal tephrostratigraphy in the Central Mediterranean: the last 20,000 yrs record of Lago Grande di Monticchio. J Volcanol Geotherm res 177:118–132CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Istituto Nazionale di Geofisica e VulcanologiaPisaItaly
  2. 2.Istituto Nazionale di Geofisica e VulcanologiaCataniaItaly
  3. 3.Istituto Nazionale di Geofisica e VulcanologiaPalermoItaly

Personalised recommendations