Predicting the end of lava flow-forming eruptions from space

  • Estelle Bonny
  • Robert Wright
Research Article


Although the volcanological community places great emphasis on forecasting the onset of volcanic eruptions, knowing when an effusive eruption will end is just as important in terms of mitigating hazards. Wadge (J Volcanol Geotherm Res 11:139–168, 1981) postulated that the onset of an episodic, lava flow-forming basaltic eruption is characterized by a rapid increase in effusion rate to a maximum, before decaying over a longer period of time until the eruption ends. We used thermal infrared remote-sensing data acquired by NASA’s MODerate Resolution Imaging Spectroradiometer (MODIS) to derive time-averaged discharge rate (TADR) time series using the method of Harris et al. (J Geophys Res 102(B4):7985–8003, 1997) for 104 eruptions at 34 volcanoes over the last 15 years. We found that 32 eruptions followed the pattern described by Wadge (J Volcanol Geotherm Res 11:139–168, 1981). Based on the MODIS-derived maximum lava discharge rate and a decay constant that best fits the exponential waning phase (updated as each new MODIS TADR observation is added to the time series), the time at which the discharge equals zero, and thus the point at which effusion ends, can be predicted. The accuracy of the prediction improves with the number of data points so that, in the ideal case, the end of effusion can be retro-casted before half of the eruption duration has passed. This work demonstrates the possibility of predicting when an eruption will end using satellite-derived TADR time series acquired in near real time during that eruption. This prediction can be made after an eruption has reached its maximum lava discharge rate and the waning phase of the Wadge trend has begun. This approach therefore only applies to the case of eruption from a chamber undergoing an elastic release of energy during lava flow emplacement, and we provide examples of eruptions where it would not be applicable.


Prediction End-of-eruption Effusive eruption Discharge rate MODIS 



EB and RW were funded by NASA (NNX14AP34G and NNX14AP37G). Harold Garbeil and Eric Pilger (HIGP) provided programming support and Pete Mouginis-Mark (HIGP) provided some helpful insights. The manuscipt benefited from reviews by Andy Harris and an anonymous reviewer. This is HIGP publication 2252 and SOEST publication 9909.


  1. Aiuppa A, Moretti R, Federico C, Giudice G, Gurrieri S, Liuzzo M, Papale P, Shinohara H, Valenza M (2007) Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology 35(12):1115–1118. doi: 10.1130/G24149A.1 CrossRefGoogle Scholar
  2. Aries SE, Harris AJL, Rothery DA (2001) Remote infrared detection of the cessation of volcanic eruptions. Geophys res Lett 28(9):1803–1806CrossRefGoogle Scholar
  3. Baubron JC, Allard P, Sabroux JC, Tedesco D, Toutain JP (1991) Soil gas emanations as precursory indicators of volcanic eruptions. J Geol Soc Lond 148:571–576CrossRefGoogle Scholar
  4. Brenguier F, Shapiro NM, Campillo M, Ferrazzini V, Duputel Z, Coutant O, Nercessian A (2008) Towards forecasting volcanic eruptions using seismic noise. Nat Geosci 1:126–130. doi: 10.1038/ngeo104 CrossRefGoogle Scholar
  5. Coppola D, Di Muro A, Peltier A, Villeneuve N, Ferrazzini V, Favalli M, Bachèlery P, Gurioli L, Harris AJL, Moune S, Vlastélic I, Galle B, Arellano S, Aiuppa A (2017) Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (la Réunion Island). Earth Planet Sci Lett 463:13–24CrossRefGoogle Scholar
  6. Global Volcanism Program (2011) Report on Kizimen (Russia). In: Wunderman R (ed) Bull Glob Volcanism Netw 36:10. Smithsonian Institution. doi: 10.5479/si.GVP.BGVN201110-300230
  7. Global Volcanism Program (2000) Report on Nyamuragira (DR Congo). In: Wunderman R (ed) Bull Glob Volcanism Netw 25:1. Smithsonian Institution. doi: 10.5479/si.GVP.BGVN200001-223020
  8. Harlow DH, Power JA, Laguerta EP, Ambubuyog G, White RA, Hoblitt RP (1996) Precursory seismicity and forecasting of the June 15, 1991, eruption of Mount Pinatubo. Fire and Mud: eruptions and lahars of Mount Pinatubo, Philippines, pp 223–247Google Scholar
  9. Harris AJL, Baloga S (2009) Lava discharge rates from satellite-measured heat flux. Geophys Res Lett 36:L19302. doi: 10.1029/2009GL039717 CrossRefGoogle Scholar
  10. Harris AJL, Blake S, Rothery DA, Stevens NF (1997) A chronology of the 1991 to 1993 Mount Etna eruption using advanced very high resolution radiometer data: implications for real-time thermal volcano monitoring. J Geophys Res 102(B4):7985–8003CrossRefGoogle Scholar
  11. Harris AJL, Flynn LP, Keszthelyi L, Mouginis-Mark PJ, Rowland SK, Resing JA (1998) Calculation of lava effusion rates from Landsat TM data. Bull Volcanol 60:52–71CrossRefGoogle Scholar
  12. Harris AJL, Murray JB, Aries SE, Davies MA, Flynn LP, Wooster MJ, Wright R, Rothery DA (2000) Effusion rate trends at Etna and Krafla and their implications for eruptive mechanisms. J Volcanol Geotherm Res 102:237–270CrossRefGoogle Scholar
  13. Harris AJL, Dehn J, Calvari S (2007) Lava effusion rate definition and measurement: a review. Bull Volcanol 70:1–22. doi: 10.1007/s00445-007-0120-y CrossRefGoogle Scholar
  14. Harris AJL, Steffke A, Calvari S, Spampinato L (2011) Thirty years of satellite-derived lava discharge rates at Etna: implications for steady volumetric output. J Geophys Res 116:B08204. doi: 10.1029/2011JB008237 Google Scholar
  15. Harris AJL (2013) Thermal remote sensing of active volcanoes: a user’s manual. Cambridge University PressGoogle Scholar
  16. Hooper AJ, Gudmundsson MT, Bagnardi M, Jarosch AH, Spaans K, Magnússon E, Parks M, Dumont S, Ofeigsson B, Sigmundsson F, Hreinsdottir S, Dahm T, Jonsdottir, K (2015) Forecasting of flood basalt eruptions: lessons from Bárðarbunga. AGU Fall Meeting AbstractsGoogle Scholar
  17. Linde AT, Agustsson K, Sacks IS, Stefansson R (1993) Mechanism of the 1991 eruption of Hekla from continuous borehole strain monitoring. Nature 365(6448):737–740CrossRefGoogle Scholar
  18. Marzocchi W, Bebbington MS (2012) Probabilistic eruption forecasting at short and long time scales. Bull Volcanol 74:1777–1805. doi: 10.1007/s00445-012-0633-x CrossRefGoogle Scholar
  19. Marzocchi W, Woo G (2007) Probabilistic eruption forecasting and the call for an evacuation. Geophys Res Lett 34:L22310. doi: 10.1029/2007GL031922 CrossRefGoogle Scholar
  20. Pallister JS, Schneider DJ, Griswold JP, Keeler RH, Burton WC, Noyles C, Newhall CJ, Ratdomopurbo A (2013) Merapi 2010 eruption—chronology and extrusion rates monitored with satellite radar and used in eruption forecasting. J Volcanol Geotherm Res 261:144–152CrossRefGoogle Scholar
  21. Pieri D, Abrams M (2005) ASTER observations of thermal anomalies preceding the April 2003 eruption of Chikurachki volcano, Kurile Islands, Russia. Remote Sens Environ 99(1):84–94CrossRefGoogle Scholar
  22. Pieri DC, Baloga SM (1986) Eruption rate, area, and length relationships for some Hawaiian lava flows. J Volcanol Geotherm res 30:29–45CrossRefGoogle Scholar
  23. Segall P (2013) Volcano deformation and eruption forecasting. In: Pyle DM, Mather TA, Biggs J (eds) Remote sensing of volcanoes and volcanic processes: integrating observation and modelling. Geol Soc London Spec Pub 380:85–106. doi: 10.1144/SP380.4
  24. Smets B, Wauthier C, d’Oreye N (2010) A new map of the lava flow field of Nyamulagira (D.R. Congo) from satellite imagery. J Afr Earth Sci 58:778–786. doi: 10.1016/j.jafrearsci.2010.07.005 CrossRefGoogle Scholar
  25. Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210:1–15. doi: 10.1016/S0012-821X(03)00124-9 CrossRefGoogle Scholar
  26. van Manen SM, Blake S, Dehn J, Valcic L (2013) Forecasting large explosions at Bezymianny Volcano using thermal satellite data. Geol Soc Lond Spec Publ 380(1):187–201Google Scholar
  27. Voight B, Hoblitt RP, Clarke AB, Lockhart AB, Miller AD, Lynch L, McMahon J (1998) Remarkable cyclic ground deformation monitored in real-time on Montserrat, and its use in eruption forecasting. Geophys Res Lett 25(18):3405–3408CrossRefGoogle Scholar
  28. Wadge G (1981) The variation of magma discharge during basaltic eruptions. J Volcanol Geotherm Res 11:139–168CrossRefGoogle Scholar
  29. Wright R, Blake S, Harris AJL, Rothery DA (2001a) A simple explanation for the space-based calculation of lava eruption rates. Earth Planet Sci Lett 192:223–233CrossRefGoogle Scholar
  30. Wright R, Flynn LP, Harris AJL (2001b) Evolution of lava flow-fields at Mount Etna, 27-28 October 1999, observed by Landsat 7 ETM+. Bull Volcanol 63:1–7. doi: 10.1007/s004450100124 CrossRefGoogle Scholar
  31. Wright R, Flynn L, Garbeil H, Harris AJL, Pilger E (2002) Automated volcanic eruption detection using MODIS. Remote Sens Environ 82:135–155CrossRefGoogle Scholar
  32. Wright R, Pilger E (2008) Radiant flux from Earth’s subaerially erupting volcanoes. Int J Remote Sens 29(22):6443–6466. doi: 10.1080/01431160802168210 CrossRefGoogle Scholar
  33. Wright R, Blackett M, Hill-Butler C (2015) Some observations regarding the thermal flux from Earth’s erupting volcanoes for the period of 2000 to 2014. Geophys Res Lett 42. doi: 10.1002/2014GL061997

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Hawaii Institute of Geophysics and PlanetologyUniversity of HawaiiHonoluluUSA
  2. 2.Department of Geology and GeophysicsUniversity of HawaiiHonoluluUSA

Personalised recommendations