Advertisement

Multi-criteria correlation of tephra deposits to source centres applied in the Auckland Volcanic Field, New Zealand

  • Jenni L. Hopkins
  • Colin J. N. Wilson
  • Marc-Alban Millet
  • Graham S. Leonard
  • Christian Timm
  • Lucy E. McGee
  • Ian E. M. Smith
  • Euan G. C. Smith
Research Article

Abstract

Linking tephras back to their source centre(s) in volcanic fields is crucial not only to reconstruct the eruptive history of the volcanic field but also to understand tephra dispersal patterns and thus the potential hazards posed by a future eruption. Here we present a multi-disciplinary approach to correlate distal basaltic tephra deposits from the Auckland Volcanic Field (AVF) to their source centres using proximal whole-rock geochemical signatures. In order to achieve these correlations, major and trace element tephra-derived glass compositions are compared with published and newly obtained whole-rock geochemical data for the entire field. The results show that incompatible trace element ratios (e.g. (Gd/Yb)N, (La/Yb)N, (Zr/Yb)N) vary widely across the AVF (e.g. (La/Yb)N = 5 to 40) but show a more restricted range within samples from a single volcanic centre (e.g. (La/Yb)N = 5 to 10). These ratios are also the least affected by fractional crystallisation and are therefore the most appropriate geochemical tools for correlation between tephra and whole-rock samples. However, findings for the AVF suggest that each volcanic centre does not have a unique geochemical signature in the field as a whole, thus preventing unambiguous correlation of tephras to source centre using geochemistry alone. A number of additional criteria are therefore combined to further constrain the source centres of the distal tephras including age, eruption scale, and location (of centres, and sites where tephra were sampled). The combination of tephrostratigraphy, 40Ar/39Ar dating and morphostratigraphic constraints allow, for the first time, the relative and absolute ordering of 48 of 53 volcanic centres of the Auckland Volcanic Field to be resolved. Eruption frequencies are shown to vary between 0.13 and 1.5 eruptions/kyr and repose periods between individual eruptions vary from <0.1 to 13 kyr, with 23 of the 48 centres shown to have pre-eruptive repose periods of <1000 years. No spatial evolutionary trends are noted, although a relationship between short repose periods and closely spaced eruption locations is identified for a number of centres. In addition, no temporal–geochemical trends are noted, but a relationship between geochemical signature and eruption volume is highlighted.

Keywords

Basalt Correlation Tephra Auckland volcanic field Monogenetic volcanic field Tephrochronology 

Notes

Acknowledgements

JLH is funded by the DEVORA (DEtermining VOlcanic Risk in Auckland) project, led by Jan Lindsay and Graham Leonard. JLH would like to thank Elaine Smid and Shaun Eaves for field assistance, Neville Hudson at the University of Auckland collections for assistance in finding pre-existing samples, and Bruce Hayward for invaluable advice on site locations for new samples. David Lowe, Monica Handler, and Stephen Blake are thanked for for valuable discussion and advice during the early stages of this manuscript. The authors also wish to thank Marcus Bursik, Siwan Davies, Kristi Wallace and James White for their thorough reviews of this manuscript.

Supplementary material

445_2017_1131_MOESM1_ESM.xlsx (956 kb)
ESM 1 (XLSX 955 kb)
445_2017_1131_MOESM2_ESM.docx (176 kb)
ESM 2 (DOCX 175 kb)

References

  1. Affleck DK, Cassidy J, Locke CA (2001) Te Pou Hawaiki volcano and pre-volcanic topography in central Auckland: volcanological and hydrogeological implications. NZ J Geol Geophys 44:313–321CrossRefGoogle Scholar
  2. Agustín-Flores J, Németh K, Cronin SJ, Lindsay JM, Kereszturi G (2015) Construction of the North Head (Maungauika) tuff cone: a product of Surtseyan volcanism, rare in the Auckland Volcanic Field, New Zealand. Bull Volcanol 77:11CrossRefGoogle Scholar
  3. Allan ASR, Baker JA, Carter L, Wysoczanksi RJ (2008) Reconstructing the Quaternary evolution of the world’s most active silicic volcanic system: insights from an ∼1.65 Ma deep ocean tephra record sourced from the Taupo Volcanic Zone, New Zealand. Quat Sci Rev 27:2341–2360CrossRefGoogle Scholar
  4. Allen SR, Smith IEM (1994) Eruption styles and volcanic hazard in the Auckland Volcanic Field, New Zealand. Geosci Rep Shizuoka Univ 20:5–14Google Scholar
  5. Alloway BV, Westgate JA, Pillans BJ, Pearce NJG, Newnham RM, Byrami ML, Aarburg SE (2004) Stratigraphy, age and correlation of middle Pleistocene silicic tephras in the Auckland region, New Zealand: a prolific distal record of Taupo Volcanic Zone volcanism. NZ J Geol Geophys 47:447–479CrossRefGoogle Scholar
  6. Bebbington MS (2013) Assessing probabilistic forecasts of volcanic eruption onsets. J Volcanol Geotherm Res 252:14–28CrossRefGoogle Scholar
  7. Bebbington MS, Cronin SJ (2011) Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bull Volcanol 73:55–72CrossRefGoogle Scholar
  8. Brand BD, Gravley DM, Clarke AB, Lindsay JM, Bloomberg SH, Agustín-Flores J, Németh K (2014) A combined field and numerical approach to understanding dilute pyroclastic density current dynamics and hazard potential: Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 276:215–232CrossRefGoogle Scholar
  9. Briggs RM, Okada T, Itaya T, Shibuya H, Smith IEM (1994) K-Ar ages, paleomagnetism, and geochemistry of South Auckland volcanic field, North Island, New Zealand. NZ J Geol Geophys 37:143–153CrossRefGoogle Scholar
  10. Bryner V (1991) Motukorea: the evolution of an eruption centre in the Auckland Volcanic Field. MSc thesis. University of Auckland, New ZealandGoogle Scholar
  11. Cassata WS, Singer BS, Cassidy J (2008) Laschamp and Mono Lake geomagnetic excursions recorded in New Zealand. Earth Planet Sci Lett 268:76–88CrossRefGoogle Scholar
  12. Cassidy J (2006) Geomagnetic excursion captured by multiple volcanoes in a monogenetic field. Geophys Res Lett 33:L21310CrossRefGoogle Scholar
  13. Charlier BLA, Peate DW, Wilson CJN, Lowestern JB, Storey M, Brown SJA (2003) Crystallisation ages in coeval silicic magma bodies: 238U-230Th disequilibrium evidence from the Rotoiti and Earthquake Flat eruption deposits, Taupo Volcanic Zone, New Zealand. Earth Planet Sci Lett 206:441–457CrossRefGoogle Scholar
  14. Cook C, Briggs RM, Smith IEM, Maas R (2005) Petrology and geochemistry of intraplate basalts in the South Auckland volcanic field, New Zealand: evidence for two coeval magma suites from distinct sources. J Petrol 46:473–503CrossRefGoogle Scholar
  15. Danišík M, Shane P, Schmitt AK, Hogg A, Santos GM, Storm S, Evans NJ, Fifield LK, Lindsay JM (2012) Re-anchoring the late Pleistocene tephrochronology of New Zealand based on concordant radiocarbon ages and combined 238U/230Th disequilibrium and (U-Th)/He zircon ages. Earth Planet Sci Lett 349-350:240–250CrossRefGoogle Scholar
  16. Davies SM, Turney CSM, Lowe JJ (2001) Identification and significance of a visible, basalt-rich Vedde Ash layer in a Late-glacial sequence on the Isle of Skye, Inner Hebrides, Scotland. J Quat Sci 16:99–104CrossRefGoogle Scholar
  17. Dunbar NW, Kurbatov AV (2011) Terphrochronology of the Siple Dome ice core, West Antarctica: correlations and sources. Quat Sci Rev 30:1602–1614CrossRefGoogle Scholar
  18. Eade J (2009) Petrology and correlation of lava flows from the central part of the Auckland Volcanic Field. MSc thesis. University of Auckland, New ZealandGoogle Scholar
  19. Fleck RJ, Hagstrum JT, Calvert AT, Evarts RC, Conrey RM (2014) 40Ar/39Ar geochronology, paleomagnetism, and evolution of the boring volcanic field, Oregon and Washington, USA. Geosphere 10:1483–1314CrossRefGoogle Scholar
  20. Flude S, Storey M (2016) 40Ar/39Ar age of the Rotoiti Breccia and Rotoehu Ash, Okataina Volcanic Complex, New Zealand, and identification of heterogeneously distributed excess 40Ar in supercooled crystals. Quat Geochronol 33:13–23CrossRefGoogle Scholar
  21. Franklin JT (1999) Geology of the Orakei Basin area. MSc thesis. University of Auckland, New ZealandGoogle Scholar
  22. Hayes JL, Wilson TM, Magill C (2015) Tephra fall clean-up in urban environments. J Volcanol Geotherm Res 304:237–252CrossRefGoogle Scholar
  23. Hayward BW (2008) Ash Hill Volcano, Wiri. Geocene Geosci Soc NZ 3:8–9Google Scholar
  24. Hayward BW, Hopkins JL, Smid ER (2016) Mangere Lagoon predated Mangere Mt. Geocene Geosci Soc NZ 14:4–5Google Scholar
  25. Hayward BW, Murdoch G, Maitland G (2011) Volcanoes of Auckland, the essential guide. Auckland University Press, Auckland, New ZealandGoogle Scholar
  26. Heming RF, Barnet PR (1986) The petrology and petrochemistry of the Auckland volcanic field. In: Smith IEM (Ed), Late Cenozoic Volcanism in New Zealand. Roy Soc NZ Bull 23:64–75Google Scholar
  27. Hill BE, Connor CB, Jarzemba MS, La Femina PC, Navarro M, Strauch W (1998) 1995 Eruptions of Cerra Negro Volcano, Nicaragua, and risk assessment for future eruptions. Geol Soc Am Bull 110:1231–1241CrossRefGoogle Scholar
  28. Hookway M (2000) The geochemistry of Rangitoto. MSc thesis. University of Auckland, New ZealandGoogle Scholar
  29. Hopkins JL, Millet M-A, Timm C, Wilson CJN, Leonard GS, Palin JM, Neil H (2015) Tools and techniques for developing tephra stratigraphies in lake cores: a case study from the Auckland Volcanic Field, New Zealand. Quat Sci Rev 123:58–75CrossRefGoogle Scholar
  30. Hopkins JL, Timm C, Millet M-A, Poirier A, Wilson CJN, Leonard GS (2016) Os isotopic constraints on crustal contamination in Auckland Volcanic Field basalts, New Zealand. Chem Geol 439:83–97CrossRefGoogle Scholar
  31. Houghton BF, Bonadonna C, Gregg CE, Johnston DM, Cousins WJ, Cole JW, Del Carlo P (2006) Proximal tephra hazards: recent eruptions studies applied to volcanic risk in the Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 155:138–149CrossRefGoogle Scholar
  32. Hoverd JL, Shane PA, Smith IEM, Smith VC, Wilson CJN (2005) Towards an improved understanding of local and distal volcanic stratigraphy in Auckland: stratigraphy of a long core from Glover Park (St Helier’s Volcano) in Auckland. Institute of Geological & Nuclear Sciences Science Report 2005:p. 45Google Scholar
  33. Huang Y, Hawkesworth C, van Calsteren P, Smith I, Black P (1997) Melt generation models for the Auckland volcanic field, New Zealand: constraints from U-Th isotopes. Earth Planet Sci Lett 149:67–84CrossRefGoogle Scholar
  34. Johnson PJ, Valentine GA, Cortés JA, Tadini A (2014) Basaltic tephra from monogenetic Marcath Volcano, central Nevada. J Volcanol Geotherm Res 281:27–33CrossRefGoogle Scholar
  35. Kawabata E, Cronin S, Bebbington M, Moufti M, El-Masry N, Wang T (2015) Identifying multiple eruption phases from a compound tephra blanket: an example of the AD1256 Al-Madinah eruption, Saudi Arabia. Bull Volcanol 77:6CrossRefGoogle Scholar
  36. Kawabata E, Bebbington MS, Cronin SJ, Wang T (2016) Optimal likelihood-based matching of volcanic sources and deposits. J Volcanol Geotherm Res 323:194–208CrossRefGoogle Scholar
  37. Kereszturi G, Németh K, Cronin SJ, Agustín-Flores J, Smith IEM, Lindsay J (2013) A model for calculating eruptive volumes for monogenetic volcanoes – implication for the Quaternary Auckland Volcanic field, New Zealand. J Volcanol Geotherm Res 266:16–33CrossRefGoogle Scholar
  38. Kereszturi G, Németh K, Cronin SJ, Procter J, Agustín-Flores J (2014) Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 286:101–115CrossRefGoogle Scholar
  39. Kermode LO (1992) Geology of the Auckland urban area. Scale 1:50,000. Institute of Geological and Nuclear Sciences geological map 2. Institute of Geological and Nuclear Sciences Ltd, Lower Hutt, New ZealandGoogle Scholar
  40. Larsson W (1937) Vulkanische asche vom ausbruch des Chilenischen vulkans Quizapú (1932) in Argentina gesammelt. Bull Geol Inst Upps 26:27–52Google Scholar
  41. Le Corvec N, Bebbington MS, Lindsay JM, McGee LE (2013) Age, distance and geochemical evolution within a monogenetic volcanic field: analysing patterns in the Auckland Volcanic Field eruption sequence. Geochem Geophys Geosyst 14:3648–3665Google Scholar
  42. LeMaitre RW (2002) Igneous rocks: classification and glossary of terms, 2nd edn. Cambridge University Press, Cambridge, p 236CrossRefGoogle Scholar
  43. Leonard GS, Calvert AT, Hopkins JL, Wilson CJN, Smid E, Lindsay J, Champion D (2017) High precision 40Ar-39Ar dating of late Quaternary basalts from Auckland Volcanic Field, New Zealand, with implications for eruption rates and paleomagnetic correlations. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2017.05.033
  44. Lian OB, Shane P (2000) Optical dating of paleosols bracketing the widespread Rotoehu tephra North Island, New Zealand. Quat Sci Rev 19:1649–1662CrossRefGoogle Scholar
  45. Lindsay JM, Leonard GS, Smid ER, Hayward BW (2011) Age of the Auckland Volcanic Field: a review of existing data. NZ J Geol Geophys 54:379–401CrossRefGoogle Scholar
  46. Lirer L, Pescatore T, Booth B, Walker GPL (1973) Two plinian pumice-fall deposits from Somma-Vesuvius. Italy Geol Soc Am Bull 84:759–772CrossRefGoogle Scholar
  47. Lowe DJ (2011) Tephrochronology and its application: a review. Quat Geochronol 6:107–153CrossRefGoogle Scholar
  48. Lowe DJ, Hogg AG (1995) Age of the Rotoehu Ash. NZ J Geol Geophys 38:399–402CrossRefGoogle Scholar
  49. Lowe DJ, Palmer DJ (2005) Andisols of New Zealand and Australia. J Integr Field Sci 2:39–65Google Scholar
  50. Lowe DJ, Alloway BV (2015) Tephrochronology. In: Rink WJ, Thompson JW (eds) Encyclopedia of scientific dating methods. Springer, Dordecht, pp 733–799Google Scholar
  51. Lowe DJ, Blaauw M, Hogg AG, Newham RM (2013) Ages of 24 widespread tephras erupted since 30,000 years ago in New Zealand, with re-evaluation of the timing and palaeoclimatic implications of the Late Glacial cool episode recorded in the Kaipo bog. Quat Sci Rev 74:170–194CrossRefGoogle Scholar
  52. Magill CR, McAneney KJ, Smith IEM (2005) Probabilistic assessment of vent locations for the next Auckland Volcanic Field event. Math Geol 37:227–242CrossRefGoogle Scholar
  53. McDonough WF, Sun S (1995) The composition of the Earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  54. McGee, LE (2012) Melting processes in small basaltic systems: the Auckland Volcanic Field, New Zealand. Ph.D. thesis, University of Auckland, New Zealand.Google Scholar
  55. McGee LE, Smith IEM (2016) Interpreting chemical compositions of small scale basaltic systems: a review. J Volcanol Geotherm Res 325:45–60CrossRefGoogle Scholar
  56. McGee LE, Beier C, Smith IEM, Turner S (2011) Dynamics of melting beneath a small-scale basaltic system: a U-Th-Ra study from Rangitoto volcano, Auckland Volcanic Field, New Zealand. Contrib Mineral Petr 162:547–563CrossRefGoogle Scholar
  57. McGee LE, Millet M-A, Smith IEM, Németh K, Lindsay JM (2012) The inception and progression of melting in a monogenetic eruption: Motukorea Volcano, the Auckland Volcanic Field, New Zealand. Lithos 156:360–374CrossRefGoogle Scholar
  58. McGee LE, Smith IEM, Millet M-A, Handley H, Lindsay JM (2013) Asthenospheric control of melting processes in a monogenetic basaltic system: a case study of the Auckland Volcanic Field, New Zealand. J Petrol 54:2125–2153CrossRefGoogle Scholar
  59. McGee LE, Millet M-A, Beier C, Smith IEM, Lindsay JM (2015) Mantle heterogeneity controls on small-volume basaltic eruption characteristics. Geology 43:551–554CrossRefGoogle Scholar
  60. McKenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32:1021–1091CrossRefGoogle Scholar
  61. Miller CA (1996) Geophysical and geochemical characteristics of the Auckland Volcanic Field. MSc thesis. University of Auckland, New ZealandGoogle Scholar
  62. Molloy CM (2008) Tephrostratigraphy of the Auckland maar craters. MSc thesis. University of Auckland, New ZealandGoogle Scholar
  63. Molloy C, Shane P, Augustinus P (2009) Eruption recurrence rates in a basaltic volcanic field based on tephra layers in maar sediments: implications for hazards in the Auckland volcanic field. Geol Soc am Bull 121:1666–1677CrossRefGoogle Scholar
  64. Needham AJ, Lindsay JM, Smith IEM, Augustinus P, Shane PA (2011) Sequential eruption of alkaline and subalkaline magmas from a small monogenetic volcano in the Auckland Volcanic Field, New Zealand. J Volcanol Geotherm Res 201:126–142CrossRefGoogle Scholar
  65. Newnham RM, Lowe DJ, Giles T, Alloway BV (2007) Vegetation and climate of Auckland, New Zealand, since ca. 32000 cal. yr ago: support for an extended LGM. J Quat Sci 22:517–534CrossRefGoogle Scholar
  66. Óladóttir BA, Larsen G, Sigmarsson O (2012) Deciphering eruption history and magmatic processes from tephra in Iceland. Jökull 62:21–38Google Scholar
  67. Ort MH, Elson MD, Anderson KC, Duffield WA, Hooten JA, Champion DE, Waring G (2008) Effects of scoria-cone eruptions upon nearby human communities. Geol Soc Am Bull 120:476–486CrossRefGoogle Scholar
  68. Paton C, Hellstrom J, Paul B, Woodhead J, Hergt J (2011) Iolite, freeware for the visualisation and processing of mass spectrometric data. J Anal Atom Spectrom 26:2508–2518CrossRefGoogle Scholar
  69. Pearce NJ, Alloway BV, Westgate JA (2008) Mid-Pleistocene silicic tephra beds in the Auckland region, New Zealand: their correlation and origins based on the trace element analyses of single glass shards. Quat Int 178:16–43CrossRefGoogle Scholar
  70. Pyle DM (1989) The thickness, volume and grain size of tephra fall deposits. Bull Volcanol 51:1–15CrossRefGoogle Scholar
  71. Pyne O’Donnell S (2011) The taphonomy of Last Glacial-Interglacial Transition (LGIT) distal volcanic ash in small Scottish lakes. Boreas 40:131–145CrossRefGoogle Scholar
  72. Ramsey MH, Potts PJ, Webb PC, Watkins P, Watson JS, Coles BJ (1995) An objective assessment of analytical method precision: comparison of ICP-AES and XRF for the analysis of silicate rocks. Chem Geol 124:1–19CrossRefGoogle Scholar
  73. Reiners PW (1998) Reactive melt transport in the mantle and geochemical signatures of mantle-derived magmas. J Petrol 39:1039–1061CrossRefGoogle Scholar
  74. Robinson JA, Wood BJ (1998) The depth of the spinel to garnet transition at the peridotite solidus. Earth Planet Sci Lett 164:277–284CrossRefGoogle Scholar
  75. Sandiford A, Alloway B, Shane P (2001) A 28,000-6600 cal yr record of local and distal volcanism preserved in a paleolake, Auckland, New Zealand. NZ J Geol Geophys 44:323–336CrossRefGoogle Scholar
  76. Sandiford A, Horrocks M, Newnham R, Ogden J, Alloway B (2002) Environmental change during the last glacial maximum (c. 25000 – c. 16500 years BP) at Mt Richmond, Auckland Isthmus, New Zealand. J Roy Soc New Zeal 32:155–167CrossRefGoogle Scholar
  77. Shane P (2005) Towards a comprehensive distal andesitic tephrostratigraphic framework for New Zealand based on eruptions from Egmont Volcano. J Quat Sci 20:45–57CrossRefGoogle Scholar
  78. Shane P, Hoverd J (2002) Distal record of multi-sourced tephra in Onepoto Basin, Auckland, New Zealand: implications for volcanic chronology, frequency and hazards. Bull Volcanol 64:441–454CrossRefGoogle Scholar
  79. Shane P, Smith IEM (2000) Geochemical fingerprinting of basaltic tephra deposits in the Auckland Volcanic Field. NZ J Geol Geophys 43:569–577CrossRefGoogle Scholar
  80. Shane P, Gehrels M, Zawalna-Geer A, Augustinus P, Lindsay J, Chaillou I (2013) Longevity of a small shield volcano revealed by crypto-tephra studies (Rangitoto volcano, New Zealand): change in eruptive behaviour of a basaltic field. J Volcanol Geotherm res 257:174–183CrossRefGoogle Scholar
  81. Shibuya H, Cassidy J, Smith IEM, Itaya T (1992) A geomagnetic excursion in the Brunhes epoch recorded in New Zealand basalts. Earth Planet Sc Lett 111:41–48CrossRefGoogle Scholar
  82. Smith IEM, Blake S, Wilson CJN, Houghton BF (2008) Deep-seated fractionation during the rise of a small-volume basalt magma batch: Crater Hill, Auckland, New Zealand. Contrib Mineral Petrol 155:511–527CrossRefGoogle Scholar
  83. Spargo SRW (2007) The Pupuke volcanic centre: polygenetic magmas in a monogenetic field. MSc thesis. University of Auckland, New ZealandGoogle Scholar
  84. Tomsen E, Lindsay JM, Gahegan M, Wilson TM, Blake DM (2014) Evacuation planning in the Auckland Volcanic Field, New Zealand: a spatio-temporal approach for emergency management and transportation network decisions. J Appl Volcanol 3:6CrossRefGoogle Scholar
  85. Ukstins Peate I, Kent AJR, Baker JA, Menzies MA (2008) Extreme geochemical heterogeneity in Afro-Arabian Oligocene tephras: preserving fractional crystallisation and mafic recharge processes in silicic magma chambers. Lithos 102:260–278CrossRefGoogle Scholar
  86. Valentine GA, Krier D, Perry FV, Heiken G (2008) Eruptive and geomorphic processes at the Lathrop Wells scoria cone volcano. J Volcanol Geotherm Res 161:57–80CrossRefGoogle Scholar
  87. van Otterloo J, Cas RAF (2013) Reconstructing the eruption magnitude and energy budgets for the pre-historic eruption of the monogenetic ∼5 ka Mt. Gambier Volcanic Complex, south-eastern Australia. Bull Volcanol 75:769CrossRefGoogle Scholar
  88. von Veh MW, Németh K (2009) An assessment of the alignments of vents based on geostatistical analysis in the Auckland Volcanic Field, New Zealand. Géomorphologie: Relief, Processus, Environment 15:175–186CrossRefGoogle Scholar
  89. Wilson CJN, Rhoades DA, Lanphere MO, Calvert AT, Houghton BF, Weaver SD, Cole JW (2007) A multi-approach radiometric age estimate for the Rotoiti and Earthquake Flat eruptions, New Zealand, with implications for the MIS 4/3 boundary. Quat Sci Rev 26:1861–1870CrossRefGoogle Scholar
  90. Wilson G, Wilson TM, Deligne NI, Cole JW (2014) Volcanic hazard impacts to critical infrastructure: a review. J Volcanol Geotherm Res 286:148–182CrossRefGoogle Scholar
  91. Zawalna-Geer A, Lindsay JM, Davies S, Augustinus P, Davies S (2016) Extracting a primary Holocene cryptotephra record from Pupuke maar sediments, Auckland, New Zealand. J Quat Sci 31:442–457CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jenni L. Hopkins
    • 1
  • Colin J. N. Wilson
    • 1
  • Marc-Alban Millet
    • 2
  • Graham S. Leonard
    • 3
  • Christian Timm
    • 3
  • Lucy E. McGee
    • 4
  • Ian E. M. Smith
    • 5
  • Euan G. C. Smith
    • 1
  1. 1.School of Geography, Environment and Earth SciencesVictoria UniversityWellingtonNew Zealand
  2. 2.School of Earth and Ocean SciencesCardiff UniversityCardiffUK
  3. 3.GNS ScienceLower HuttNew Zealand
  4. 4.Department of Earth and Planetary Sciences, E&A 424Macquarie UniversitySydneyAustralia
  5. 5.School of EnvironmentAuckland UniversityAucklandNew Zealand

Personalised recommendations