Seismic signals of rockfalls as indicators of the origin of lava fragments emplaced during the 2010 endogenous and exogenous growth in the crater of Volcán de Colima, México

  • Vyacheslav M. ZobinEmail author
  • Armando Tellez
  • José E. Aguilar
  • Karla G. Cruz
Research Article


The 2010–2011 exogenous emplacement of a lava lobe during the 2007–2011 lava dome growth at andesitic Volcán de Colima, México, interrupted the previous endogenous regime and allowed us to obtain seismic signals associated with rockfalls triggered by both exogenous and endogenous growth. We analyzed a total of 410 seismic signals of rockfalls with durations from 50 to 150 s recorded during January–April 2010. Two characteristic populations of seismic signal peak frequencies were identified: a low frequency (LF) group (mean = 1.76 ± 0.44 Hz) and a high frequency (HF) group (mean = 3.13 ± 0.63 Hz), associated respectively with rockfalls caused by endogenous and exogenous growth in the crater. Application of the Kolmogorov-Smirnov test showed at the 0.01 significance level that the databases of LF and HF seismic signals of rockfalls belong to different groups of signals and may be considered as having different origins. The results show that the spectral properties of the seismic signals produced by rockfalls may serve as indicators of the origin of falling lava fragments and thus can be used to monitor effusive volcanic activity.


Volcán de Colima Rockfalls Seismic signals Endogenous lava dome growth Exogenous lava dome growth 



The comments of the Associate Editor Judy Fierstein and two anonymous reviewers helped us to improve the manuscript. Our English grammar was significantly improved by Judy Fierstein and reviewers. We thank the personnel of the seismic network RESCO for providing the seismic records of Volcán de Colima. The processing of the digital seismic signals was realized using the program DEGTRA provided by Mario Ordaz, UNAM and the Interactive MATLAB software for the analysis of seismic volcanic signals prepared by Philippe Lesage and adapted by Miguel Gonzalez.


  1. BGVN (2010-2011). Bulletin of the Global Volcanism network, Smithsonian Institution, 35, 5; 36, 3.Google Scholar
  2. Calder, E.S., Luckett, R., Sparks, R.S.J., Voight, B. (2002). Mechanisms of lava dome instability and generation of rockfalls and pyroclastic flows at Soufrére Hills volcano, Montserrat. In: Druitt, T.H., Kokelaar, B.P. (Eds.), The eruption of Soufriére Hills volcano, Montserrat, from 1995 to 1999. Geol. Soc. London, Memoirs, vol. 21, pp. 173–190.Google Scholar
  3. Calder, E.S., Lavallée, Y., Kendrick, J. E., Bernstein, M. (2015). Lava Dome Eruptions. In: Sigurdsson, H. (Ed.), “The Encyclopedia of Volcanoes”, Second Edition, Academic Press, 2015, Pp 343–362.Google Scholar
  4. Fink JH, Malin MC, Anderson SW (1990) Intrusive and extrusive growth of the Mount St. Helens lava dome. Nature 348:435–437CrossRefGoogle Scholar
  5. Gutenberg B, Richter C (1956) Magnitude and energy of earthquakes. Ann Geofis 9:1–15Google Scholar
  6. Hutchison, W., N. Varley, D. M. Pyle, and T. A. Mather (2013). Airborne thermal remote sensing of the Volcan de Colima (Mexico) lava dome from 2007 to 2010. In: Pyle, D. M., Mather, T. A. & Biggs, J. (eds). “Remote Sensing of Volcanoes and Volcanic Processes: Integrating Observation and Modelling”. Geological Society, London, Special Publications, 380, 203–228.Google Scholar
  7. Muller P, Neumann P, Storm R (1979) Tafeln der Mathematischen Statistik. VEB Fachbuchverlag, Leipzig, 272 ppGoogle Scholar
  8. Nakada S, Shimizu H, Ohta K (1999) Overview of 1990–1995 eruptions at Unzen volcano. J Volcanol Geotherm Res 89:1–22CrossRefGoogle Scholar
  9. Pallister JS, Diefenbach AK, Burton WC, Munoz J, Griswold JP, Lara LE, Lowenstern JB, Valenzuela CE (2013) The Chaiten rhyolite lava dome: eruption sequence, lava dome volumes, rapid effusion rates and source of the rhyolite magma. Andean Geol 40:277–294Google Scholar
  10. Scott, W.E., Sherrod, D.R., and Gardner, C.A. (2008). Overwiew of the 2004 to 2006, and continuing, eruption of Mount St.Helens, Washington. In: “A volcano rekindled: the renewed eruption of Mount St.Helens, 2004–2006” (D.R. Sherrod, W.E. Scott, and P.H. Stauffer, Eds.). U.S. Geological Survey Prof. Paper 1750. Washington. Pp. 3–26.Google Scholar
  11. Tierz P, Sandri L, Costa A, Zaccarelli L, De Vito MA, Sulpizio R, Marzocchi W (2016) Suitability of energy cone for probabilistic volcanic hazard assessment: validation tests at Somma-Vesuvius and Campi Flegrei (Italy). Bull Volcanol 78:79CrossRefGoogle Scholar
  12. Watts, R. B., R. A. Herd, R. S. J. Sparks, and S. R. Young (2002). Growth patterns and emplacement of the andesite lava dome at the Soufrière Hills Volcano, Montserrat. In: “The Eruption of Soufriere Hills Volcano, Montserrat, from 1995 to 1999”, (T. H. Druitt and B. P. Kokelaar, Eds). Geol. Soc. London Mem., 21, pp. 115–152.Google Scholar
  13. Zobin VM, Orozco-Rojas J, Reyes-Dávila GA, Navarro C (2005) Seismicity of an andesitic volcano during block-lava efusión: Volcán de Colima, México, November 1998-January 1999. Bull Volcanol 67:679–688CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Vyacheslav M. Zobin
    • 1
    Email author
  • Armando Tellez
    • 1
  • José E. Aguilar
    • 2
  • Karla G. Cruz
    • 2
  1. 1.Centro Universitario de Estudios VulcanológicosUniversidad de ColimaColimaMexico
  2. 2.Unidad Académica Ciencias de la TierraUniversidad Autónoma del Estado de GuerreroTaxco el ViejoMexico

Personalised recommendations