Skip to main content

Advertisement

Log in

High magma decompression rates at the peak of a violent caldera-forming eruption (Lower Pumice 1 eruption, Santorini, Greece)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

We use the deposit sequence resulting from the first catastrophic caldera collapse event recorded at Santorini (associated with 184 ka Lower Pumice 1 eruption), to study the shallow conduit dynamics at the peak of caldera collapse. The main phase of the Lower Pumice 1 eruption commenced with the development of a sustained buoyant eruption column, producing a clast-supported framework of rhyodacitic white pumice (LP1-A). The clasts have densities of 310–740 kg m−3, large coalesced vesicles that define unimodal size distributions and moderate to high vesicle number densities (1.2 × 109–1.7 × 109 cm−3). Eruption column collapse, possibly associated with incipient caldera collapse, resulted in the development of pyroclastic flows (LP1-B). The resulting ignimbrite is characterised by rhyodacitic white pumice with a narrow density range (250–620 kg m−3) and moderate to high vesicle number densities (1.3 × 109–2.1 × 109 cm−3), comparable to clasts from LP1-A. An absence of deep, basement-derived lithic clast assemblages, together with the occurrence of large vesicles and relatively high vesicle number densities in pumice from the fallout and pyroclastic flow phases, suggests shallow fragmentation depths, a prolonged period of bubble nucleation and growth, and moderate rates of decompression prior to fragmentation (7–11 MPa s−1). Evacuation of magma during the pyroclastic flow phase led to under-pressurisation of the magma reservoir, the propagation of faults (associated with the main phase of caldera collapse) and the formation of 20 m thick lithic lag breccias (LP1-C). Rhyodacitic pumices from the base of the proximal lithic lag breccias show a broader range of density (330–990 kg m−3), higher vesicle number densities (4.5 × 109–1.1 × 1010 cm−3) and higher calculated magma decompression rates of 15–28 MPa s−1 than pyroclasts from the pre-collapse eruptive phases. In addition, the abundance of lithic clasts, including deeper, basement-derived lithic assemblages, records the opening of new vents and a deepening of the fragmentation surface. These data support numerical simulations which predict rapid increases in magma decompression and mass discharge rates at the onset of caldera collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acocella V (2007) Understanding caldera structure and development: an overview of analogue models compared to natural calderas. Earth-Sci Rev 85(3–4):125–160

    Article  Google Scholar 

  • Acocella V, Cifelli F, Funiciello R (2000) Analogue models of collapse calderas and resurgent domes. J Volcanol Geotherm Res 104(1–4):81–96

    Article  Google Scholar 

  • Adams NK, Houghton BF, Hildreth W (2006) Abrupt transitions during sustained explosive eruptions: examples from the 1912 eruption of Novarupta, Alaska. Bull Volcanol 69(2):189–206

    Article  Google Scholar 

  • Alfano F, Bonadonna C, Gurioli L (2012) Insights into eruption dynamics from textural analysis: the case of the May, 2008, Chaitén eruption. Bull Volcanol 74(9):2095–2108

    Article  Google Scholar 

  • Allen SR, Cas RAF (1998) Lateral variations within coarse co-ignimbrite lithic breccias of the Kos Plateau Tuff, Greece. Bull Volcanol 59(5):356–377

    Article  Google Scholar 

  • Andrews BJ, Gardner JE (2010) Effects of caldera collapse on magma decompression rate: an example from the 1800 14C yr BP eruption of Ksudach Volcano, Kamchatka, Russia. J Volcanol Geotherm Res 198(1–2):205–216

    Article  Google Scholar 

  • Andriessen PAM, Boelrijk NAIM, Hebeda EH, Priem HNA, Verdurnen EAT, Verschure RH (1979) Dating the events of metamorphism and granitic magmatism in the Alpine orogen of Naxos (Cyclades, Greece). Contr Mineral and Petrol 69(3):215–225

    Article  Google Scholar 

  • Bagdassarov N, Dorfman A, Dingwell DB (2000) Effect of alkalis, phosphorus, and water on the surface tension of haplogranite melt. Am Mineral 85(1):33–40

    Article  Google Scholar 

  • Bailey RA (1994) Physical geology and eruptive history of the Matahina Ignimbrite, Taupo Volcanic Zone, North Island, New Zealand. NZ J Geol Geophys 37(3):319–344

    Article  Google Scholar 

  • Bear AN, Cas RAF, Giordano G (2009) Variations in eruptive style and depositional processes associated with explosive, phonolitic composition, caldera-forming eruptions: the 151 ka Sutri eruption, Vico Caldera, central Italy. J Volcanol Geotherm Res 184(3–4):225–255

    Article  Google Scholar 

  • Beddoe-Stephens B, Millward D (2000) Very densely welded, rheomorphic ignimbrites of homogeneous intermediate calc-alkaline composition from the English Lake District. Geol Mag 137(2):155–173

    Article  Google Scholar 

  • Behrens H, Zhang Y, Xu Z (2004) H2O diffusion in dacitic and andesitic melts. Geochim Cosmochim Acta 68(24):5139–5150

    Article  Google Scholar 

  • Brown RJ, Orsi G, De Vita S (2008) New insights into Late Pleistocene explosive volcanic activity and caldera formation on Ischia (southern Italy). Bull Volcanol 70(5):583–603

    Article  Google Scholar 

  • Cadoux A, Scaillet B, Druitt TH, Deloule E (2014) Magma storage conditions of large Plinian eruptions of Santorini Volcano (Greece). J Petrol 55(6):1129–1171

    Article  Google Scholar 

  • Carey RJ, Houghton BF, Thordarson T (2010) Tephra dispersal and eruption dynamics of wet and dry phases of the 1875 eruption of Askja Volcano, Iceland. Bull Volcanol 72(3):259–278

    Article  Google Scholar 

  • Cas RAF, Wright HMN, Folkes CB, Lesti C, Porreca M, Giordano G, Viramonte JG (2011) The flow dynamics of an extremely large volume pyroclastic flow, the 2.08-Ma Cerro Galán Ignimbrite, NW Argentina, and comparison with other flow types. Bull Volcanol 73(10):1583–1609

    Article  Google Scholar 

  • Druitt TH (1985) Vent evolution and lag breccia formation during the Cape Riva eruption of Santorini, Greece. J Geol 93(4):439–454

    Article  Google Scholar 

  • Druitt TH (2014) New insights into the initiation and venting of the Bronze-Age eruption of Santorini (Greece), from component analysis. Bull Volcanol 76(2):1–21

    Article  Google Scholar 

  • Druitt TH, Bacon CR (1986) Lithic breccia and ignimbrite erupted during the collapse of Crater Lake Caldera, Oregon. J Volcanol Geotherm Res 29(1–4):1–32

    Article  Google Scholar 

  • Druitt TH, Edwards L, Mellors RM, Pyle DM, Sparks RSJ, Lanphere M, Davies M, Barreirio B (1999) Santorini Volcano. The Geological Society, London

    Google Scholar 

  • Druitt TH, Francaviglia V (1992) Caldera formation on Santorini and the physiography of the islands in the late Bronze Age. Bull Volcanol 54(6):484–493

    Article  Google Scholar 

  • Folch A, Martí J (2009) Time-dependent chamber and vent conditions during explosive caldera-forming eruptions. Earth Planet Sci Lett 280(1–4):246–253

    Article  Google Scholar 

  • Folkes C, Wright H, Cas RF, de Silva S, Lesti C, Viramonte J (2011) A re-appraisal of the stratigraphy and volcanology of the Cerro Galán volcanic system, NW Argentina. Bull Volcanol 73(10):1427–1454

    Article  Google Scholar 

  • Gardner JE, Hilton M, Carroll MR (1999) Experimental constraints on degassing of magma: isothermal bubble growth during continuous decompression from high pressure. Earth Planet Sci Lett 168(1–2):201–218

    Article  Google Scholar 

  • Gardner JE, Ketcham RA, Moore G (2013) Surface tension of hydrous silicate melts: constraints on the impact of melt composition. J Volcanol Geotherm Res 267:68–74

    Article  Google Scholar 

  • Gertisser R, Preece K, Keller J (2009) The Plinian Lower Pumice 2 eruption, Santorini, Greece: magma evolution and volatile behaviour. J Volcanol Geotherm Res 186(3–4):387–406

    Article  Google Scholar 

  • Gregg PM, de Silva SL, Grosfils EB, Parmigiani JP (2012) Catastrophic caldera-forming eruptions: thermomechanics and implications for eruption triggering and maximum caldera dimensions on Earth. J Volcanol Geotherm Res 241–242:1–12

    Article  Google Scholar 

  • Gudmundsson A (1998) Formation and development of normal-fault calderas and the initiation of large explosive eruptions. Bull Volcanol 60(3):160–170

    Article  Google Scholar 

  • Hasegawa T, Matsumoto A, Nakagawa M (2016) Evolution of the 120 ka caldera-forming eruption of Kutcharo volcano, eastern Hokkaido, Japan: geologic and petrologic evidence for multiple vent systems and rapid generation of pyroclastic flow. J Volcanol Geotherm Res 321:58–72

    Article  Google Scholar 

  • Houghton BF, Carey RJ, Cashman KV, Wilson CJN, Hobden BJ, Hammer JE (2010) Diverse patterns of ascent, degassing, and eruption of rhyolite magma during the 1.8ka Taupo eruption, New Zealand: evidence from clast vesicularity. J Volcanol Geotherm Res 195(1):31–47

    Article  Google Scholar 

  • Jackson J (1994) Active tectonics of the Aegean region. Annu Rev Earth Planet Sci 22(1):239–271

    Article  Google Scholar 

  • Keller J, Kraml M, Schwarz M (2000) Dating major volcanic paroxysms within the deep-sea record: the example of the Thera Formation, Santorini, Greece. In: IAVCEI General Assembly. Bali, Indonesia, p 16

    Google Scholar 

  • Klug C, Cashman K, Bacon C (2002) Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon. Bull Volcanol 64(7):486–501

    Article  Google Scholar 

  • Mastin LG (2001) A simple calculator of ballistic trajectories for blocks ejected during volcanic eruptions. In, US Geological Survey, p 16

    Google Scholar 

  • Milner DM, Cole JW, Wood CP (2003) Mamaku Ignimbrite: a caldera-forming ignimbrite erupted from a compositionally zoned magma chamber in Taupo Volcanic Zone, New Zealand. J Volcanol Geotherm Res 122(3–4):243–264

    Article  Google Scholar 

  • Mourtada-Bonnefoi CC, Laporte D (2002) Homogeneous bubble nucleation in rhyolitic magmas: an experimental study of the effect of H2O and CO2. Journal of Geophysical Research: Solid Earth 107(B4):ECV 2–1–ECV 2–19

  • Nairn IA, Wood CP, Bailey RA (1994) The Reporoa caldera, Taupo Volcanic Zone: source of the Kaingaroa Ignimbrites. Bull Volcanol 56(6–7):529–537

    Article  Google Scholar 

  • Nicholls IA (1971) Petrology of Santorini Volcano, Cyclades, Greece. J Petrol 12(1):67–119

    Article  Google Scholar 

  • Palladino DM, Simei S (2005) Eruptive dynamics and caldera collapse during the Onano eruption, Vulsini, Italy. Bull Volcanol 67(5):423–440

    Article  Google Scholar 

  • Papanikolaou DJ (1987) Tectonic evolution of the Cycladic blueschist belt (Aegean Sea, Greece). In: Helgeson H (ed) chemical transport in metasomatic processes. Springer Netherlands, pp 429-450

  • Pensa A, Cas R, Giordano G, Porreca M, Wallenstein N (2015) Transition from steady to unsteady Plinian eruption column: the VEI 5, 4.6 ka Fogo A Plinian eruption, São Miguel, Azores. J Volcanol Geotherm Res 305:1–18

    Article  Google Scholar 

  • Pittari A, Cas RAF, Wolff JA, Nichols HJ, Larson PB, Martí J (2008) Chapter 3 The use of lithic clast distributions in pyroclastic deposits to understand pre- and syn-caldera collapse processes: a case study of the Abrigo ignimbrite, Tenerife, Canary Islands. In: Joachim G, Joan M, iacute (eds) developments in volcanology. Elsevier, pp 97-142

  • Reubi O, Nicholls IA (2004) Variability in eruptive dynamics associated with caldera collapse: an example from two successive eruptions at Batur volcanic field, Bali, Indonesia. Bull Volcanol 66(2):134–148

    Article  Google Scholar 

  • Rose WI, Chesner CA (1987) Dispersal of ash in the great Toba eruption, 75 ka. Geology 15(10):913–917

    Article  Google Scholar 

  • Rosi M, Vezzoli L, Aleotti P, De Censi M (1996) Interaction between caldera collapse and eruptive dynamics during the Campanian Ignimbrite eruption, Phlegraean Fields, Italy. Bull Volcanol 57(7):541–554

    Article  Google Scholar 

  • Rotella MD, Wilson CJN, Barker SJ, Cashman KV, Houghton BF, Wright IC (2014) Bubble development in explosive silicic eruptions: insights from pyroclast vesicularity textures from Raoul volcano (Kermadec arc). Bull Volcanol 76(8):826

    Article  Google Scholar 

  • Rust AC, Cashman KV (2011) Permeability controls on expansion and size distributions of pyroclasts. J Geophys Res B: Solid Earth 116(11)

  • Sahagian DL, Proussevitch AA (1998) 3D particle size distributions from 2D observations: stereology for natural applications. J Volcanol Geotherm Res 84(3–4):173–196

    Article  Google Scholar 

  • Schliestedt M, Altherr R, Mathews A (1987) Evolution of the Cycladic crystalline complex: petrology, isotope geochemistry and geochronology. In: Helgeson R (ed) Chemical processes in metasomatic processes. Reidal, Dordrecht, pp 389–428

    Google Scholar 

  • Shea T, Gurioli L, Houghton BF, Cioni R, Cashman KV (2011) Column collapse and generation of pyroclastic density currents during the A.D. 79 eruption of Vesuvius: the role of pyroclast density. Geology 39(7):695–698

    Article  Google Scholar 

  • Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geotherm Res 190(3–4):271–289

    Article  Google Scholar 

  • Silva C (2008) Reconstruction and eruptive dynamics of the Holocene basaltic-andesitic Pucón Ignimbrite. University of Blaise Pascal, University of Blaise Pascal, In

    Google Scholar 

  • Simmons JM, Cas RAF, Druitt TH, Folkes CB (2016) Complex variations during a caldera-forming Plinian eruption, including precursor deposits, thick pumice fallout, co-ignimbrite breccias and climactic lag breccias: the 184 ka Lower Pumice 1 eruption sequence, Santorini, Greece. J Volcanol Geotherm Res 324:200–219

    Article  Google Scholar 

  • Suzuki-Kamata K, Kamata H, Bacon CR (1993) Evolution of the caldera-forming eruption at Crater Lake, Oregon, indicated by component analysis of lithic fragments. J Geophys Res 98(B8):14059–14074

    Article  Google Scholar 

  • Toramaru A (2006) BND (bubble number density) decompression rate meter for explosive volcanic eruptions. J Volcanol Geotherm Res 154(3–4):303–316

    Article  Google Scholar 

  • Vespa M, Keller J, Gertisser R (2006) Interplinian explosive activity of Santorini volcano (Greece) during the past 150,000 years. J Volcanol Geotherm Res 153(3–4):262–286

    Article  Google Scholar 

  • Vinkler AP, Cashman KV, Giordano G, Groppelli G (2012) Evolution of the mafic Villa Senni caldera-forming eruption at Colli Albani volcano, Italy, indicated by textural analysis of juvenile fragments. J Volcanol Geotherm Res 235–236:37–54

    Article  Google Scholar 

  • Walker GPL (1985) Origin of coarse lithic breccias near ignimbrite source vents. J Volcanol Geotherm Res 25(1–2):157–171

    Article  Google Scholar 

  • Wilson CJN (2001) The 26.5 ka Oruanui eruption, New Zealand: an introduction and overview. J Volcanol Geotherm Res 112(1–4):133–174

    Article  Google Scholar 

  • Young SR (1990) Physical volcanology of Holocene airfall deposits from Mt. Mazama, Crater Lake, Oregon. In: University of Lancaster,

  • Zhang Y, Behrens H (2000) H2O diffusion in rhyolitic melts and glasses. Chem Geol 169(1–2):243–262

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by discretionary research funds of R.A.F Cas. This is Laboratory of Excellence ClerVolc contribution number 247. This paper has benefited from constructive reviews by Colin Wilson, Thomas Shea, Joan Marti, Jim Cole, Alain Burgisser and Thomas Giachetti, whom we thank for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Simmons.

Additional information

Editorial responsibility: V. Acocella

Electronic supplementary material

ESM 1

(DOCX 3387 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simmons, J.M., Carey, R.J., Cas, R. et al. High magma decompression rates at the peak of a violent caldera-forming eruption (Lower Pumice 1 eruption, Santorini, Greece). Bull Volcanol 79, 42 (2017). https://doi.org/10.1007/s00445-017-1120-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-017-1120-1

Keywords

Navigation