Skip to main content

Advertisement

Log in

Red Sea rift-related Quseir basalts, central Eastern Desert, Egypt: Petrogenesis and tectonic processes

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Mineral and whole-rock chemistry of Red Sea rift-related Tertiary basalts from south Quseir city, central Eastern Desert of Egypt is presented to investigate their petrogenesis and relationship to tectonic processes. The south Quseir basalts (SQB) are classified as high-Ti (TiO2 >2 wt.%) subalkaline transitional lava emplaced in an anorogenic tectonic setting. Their Mg# varies from 48 to 53 indicating the evolved nature of the SQB. Pearce element ratios suggest that the SQB magmas evolved via fractional crystallization of olivine + clinopyroxene ± plagioclase, but the absence of Eu anomalies argues against significant plagioclase fractionation. Clinopyroxene compositions provide evidence for polybaric fractionation of the parental mafic magmas. Estimated temperatures of crystallization are 1015 to 1207 °C for clinopyroxene and 1076 to 1155 °C for plagioclase. These values are interpreted to result from early stage crystallization of clinopyroxene followed by concurrent crystallization of clinopyroxene and plagioclase. The incompatible trace element signatures of the SQB (La/Ba = 0.08–0.10 and La/Nb = 0.89–1.04) are comparable to those of ocean island basalts (OIB) generated from an asthenospheric mantle source unaffected by subduction components. Modeling calculations indicate that the SQB primary magmas were derived from ~4–5% partial melting of a garnet-bearing lherzolite mantle source. The NE Egyptian basaltic volcanism is spatially and temporally related to Red Sea rifting and to the local E–W striking faults, confirming a relationship to tectonic activity. Our results suggest that the extensional regime associated with Red Sea rifting controlled the generation of the Egyptian basalts, likely as a result of passive upwelling of asthenospheric mantle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdel Aal AY (1981) Comparative petrological and geochemical studies of post-Cambrian basaltic rocks in Egypt. Ph.D. Thesis, Minia University, Egypt

  • Abdel Aal AY (1988) Characteristics and age of the volcanic rocks of south El-Quseir, Red Sea coastal plain, Egypt. Egypt J Geol 32:27–48

    Google Scholar 

  • Abdel-Meguid AA (1992) Late Proterozoic Pan African tectonic evolution of the Egyptian part of the Arabian–Nubian Shield. MERC Ain Shams Univ, Earth Sc Ser 6:13–28

    Google Scholar 

  • Ali Sh (2012) Anorogenic Cenozoic Volcanism in the Carpathian-Pannonian Region. LAP Lambert Academic Publishing, Germany, 108 pp

  • Ali Sh, Ntaflos T (2011) Alkali basalts from Burgenland, Austria: petrological constraints on the origin of the westernmost magmatism in the Carpathian–Pannonian region. Lithos 121:176–188

  • Ali Sh, Ntaflos T, Upton BGJ (2013) Petrogenesis and mantle source characteristics of Quaternary alkaline mafic lavas in the western Carpathian–Pannonian Region, Styria, Austria. Chem Geol 337–338:99–113

  • Andersen DJ, Lindsley DH (1985) New (and final) models for the Ti-magnetite/ilmenite geothermometer and oxygen barometer. Eos 66:416

    Google Scholar 

  • Aoki K, Kushiro I (1968) Some clinopyroxenes from ultramafic inclusions in Dreiser Weiher, Eifel. Contrib Mineral Petrol 18:326–337

    Article  Google Scholar 

  • Bacon CR, Hirschmann MM (1988) Mg/Mn partitioning as a test for equilibrium between coexisting Fe–Ti oxides. Am Mineral 73:57–61

    Google Scholar 

  • Baker J, Snee L, Menzies M (1996) A brief Oligocene period of flood volcanism in Yemen: implications for the duration and rate of continental flood volcanism at the Afro–Arabian triple junction. Earth Planetary. Sci Lett 138:39–55

    Google Scholar 

  • Baldridge WS, Eyal Y, Bartov Y, Steinitz G, Eyal M (1991) Miocene magmatism of Sinai related to the opening of the Red Sea. Tectonophysics 197:181–201

    Article  Google Scholar 

  • Barrett TJ, MacLean WH (1994) Chemostratigraphy and hydrothermal alteration in exploration for VHMS deposits in greenstone and younger volcanic rocks. In: Lentz DR (ed.) Alteration and Alteration Processes Associated with Ore-Forming Systems. Geological Association of Canada, Short Course Notes 11: 433–467

  • Bertrand H, Chazot G, Blichert-Toft J, Thoral S (2003) Implications of widespread high-μ volcanism on the Arabian Plate for Afar mantle plume and lithosphere composition. Chem Geol 198:47–61

    Article  Google Scholar 

  • Bosworth W, Stockli DF, Helgeson DE (2015) Integrated outcrop, 3D seismic, and geochronologic interpretation of Red Sea dike-related deformation in the Western Desert, Egypt—the role of the 23 Ma Cairo “mini-plume”. J Afr Earth Sci 109:107–119

    Article  Google Scholar 

  • Buck WR (2006) The role of magma in the development of the Afro-Arabian rift system. In: Yirgu G, Ebinger CJ, Maguire PKH (eds) The Afar volcanic province within the East African rift system. Geological Society of London Special Publication, London, pp. 43–54

    Google Scholar 

  • Condie KC (1999) Mafic crustal xenoliths and the origin of the lower continental crust. Lithos 46:95–101

    Article  Google Scholar 

  • Condie KC (2003) Incompatible element ratios in oceanic basalts and komatiites: tracking deep mantle sources and continental growth rates with time. Geochem Geophys Geosyst 4(1):1–28. doi:10.1029/2002GC000333

    Article  Google Scholar 

  • Chang S, Van der Lee S (2011) Mantle plumes and associated flow beneath Arabia and East Africa. Earth Planet Sci Lett 302:448–454

    Article  Google Scholar 

  • Courtillot V, Jaupart C, Manighetti I, Tapponnier P, Besse J (1999) On causal links between flood basalts and continental breakup. Earth Planet Sci Lett 166:177–195

    Article  Google Scholar 

  • Daradich A, Mitrovica JX, Pysklywec RN, Willett SD, Forte AM (2003) Mantle flow, dynamic topography, and rift-flank uplift of Arabia. Geology 31:901–904

    Article  Google Scholar 

  • Dobosi G, Schultz-Güttler R, Kurat G, Kracher A (1991) Pyroxene chemistry and evolution of alkali basaltic rocks from Burgenland and Styria, Austria. Mineral Petrol 43:275–292

    Article  Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435

    Article  Google Scholar 

  • Dupuy C, Liotard JM, Dostal J (1992) Zr/Hf fractionation in intraplate basaltic rocks: carbonate metasomatism in the mantle source. Geochemica et Cosmochimica Acta 56:2417–2423

    Article  Google Scholar 

  • Ebinger CB, Sleep NH (1998) Cenozoic magmatism throughout East Africa resulting from impact of a single plume. Nature 395:788–791

    Article  Google Scholar 

  • Endress C (2010) Geochemistry of 24 Ma basalts from northeast Egypt: implications for widespread magmatism in northern Africa. M.Sc. Thesis, 162 pp

  • Endress C, Furman T, Abu El-Rus MA, Hanan BB (2011) Geochemistry of 24 Ma basalts from NE Egypt: source components and fractionation history. In: Van Hinsbergen DJJ, Buiter SJH, Torsvik TH, Gaina C, Webb SJ (eds.) The Formation and Evolution of Africa: A Synopsis of 3.8 Ga of Earth History., Geological Society, London, Special Publications 357: 265–283

  • Farahat ES, Abdel Ghani MS, Aboazom AS, Asran AMH (2006) Mineral chemistry of Al Haruj low-volcanicity rift basalts, Libya: implications for petrogenetic and geotectonic evolution. J Afr Earth Sci 45:198–212

    Article  Google Scholar 

  • Green TH (1995) Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem Geol 120:347–359

    Article  Google Scholar 

  • Hanan BB, Graham DW (1996) Lead and helium isotope evidence from oceanic basalts for a common deep source of mantle plumes. Science 272:991–995

    Article  Google Scholar 

  • Herzberg C, Asimow PD (2008) Petrology of some oceanic island basalts: PRIMELT2.XLS software for primary magma calculation. Geochem Geophys Geosyst 9. doi:10.1029/2008GC002057

  • Hofmann AW, Jochum KP, Seufert M, White WM (1986) Nb and Pb in oceanic basalts, new constraints on mantle evolution. Earth Planet Sci Lett 79:33–45

    Article  Google Scholar 

  • Hofmann AW, White WM (1983) Ba, Rb and Cs in the earth’s mantle. Z Naturforsch 38a:256–266

    Google Scholar 

  • Hofmann C, Courtillot V, Férand G, Rochette P, Yirgu G, Ketefo E, Pik R (1997) Timing of the Ethiopian flood basalt event and implications for plume birth and global change. Nature 389:838–841

    Article  Google Scholar 

  • Ilani S, Harlavan Y, Tarawneh K, Rabba I, Weinberger R, Ibrahim K, Peltz S, Steinitz G (2001) New K-Ar ages of basalts from the Harrat Ash Shaam volcanic field in Jordan: implications for the span and duration of the upper-mantle upwelling beneath the western Arabian plate. Geology 29:171–174

    Article  Google Scholar 

  • Jourdan F, Bertrand H, Schärer U, Blichert-Toft J, Feraud G, Kampunzu AB (2007) Major and trace element and Sr, Nd, Hf, and Pb isotope compositions of the Karoo large igneous province, Botswana–Zimbabwe: lithosphere vs mantle plum contribution. J Petrol 48:1043–1077

    Article  Google Scholar 

  • Kieffer B, Arndt N, Lapierre H, Bastien F, Bosch D, Pecher A, Yirgu G, Ayalew D, Weis D, Jerram DA, Keller F, Meugniot C (2004) Flood and shield basalts from Ethiopia: magmas from the African superswell. J Petrol 45:793–834

    Article  Google Scholar 

  • Le Bas MJ (1962) The role of aluminum in igneous clinopyroxenes with relation to their parentage. Am J Sci 260:267–288

    Article  Google Scholar 

  • Le Bas MJ (1989) Nephelinitic and basanitic rocks Journal of Petrology 30: 1299–1312

  • Le Maitre RW, Streckeisen A, Zanettin B, Le Bas M.J, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova S, Keller J, Lamere J, Sabine PA, Schmid R, Sorensen H, Woolley AR (2002) Igneous rocks: a classification and glossary of terms, Recommendations of the International Union of Geological Sciences, Sub-commission of the Systematics of Igneous Rocks. Cambridge University Press

  • Lepage LD (2003) ILMAT: an Excel worksheet for ilmenite-magnetite geothermometry and geobarometry. Comput Geosci 29:673–678

    Article  Google Scholar 

  • Leterrier J, Maury RC, Thonon P, Girard D, Marchal M (1982) Clinopyroxene composition as a method of identification of the magmatic affinities of paleo-volcanic series. Earth Planet Sci Lett 59:139–154

    Article  Google Scholar 

  • Lustrino M, Cucciniello C, Melluso L, Tassinari CCG, Dè Gennaro R, Serracino M (2012) Petrogenesis of Cenozoic volcanic rocks in the NW sector of the Gharyan volcanic field, Libya. Lithos 155:218–235

    Article  Google Scholar 

  • Lustrino M, Wilson M (2007) The circum-Mediterranean anorogenic Cenozoic igneous province. Earth-Sci Rev 81:1–65

    Article  Google Scholar 

  • McBirney AR (1984) Igneous petrology. Freeman, San Francisco, CA (504 pp.)

  • Mckenzie D, O’Nions RK (1991) Partial melt distributions from inversion of rare earth element concentrations. J Petrol 32(5):1021–1091

    Article  Google Scholar 

  • Meneisy MY, Abdel Aal AY (1983) Geochronology of Phanerozoic volcanic activity in Egypt. Bull Fac Sci, Ain Shams Univ 24:163–175

    Google Scholar 

  • Meneisy MY, EL Kalioubi B (1975) Isotopic ages of the volcanic rocks of the Bahariya Oasis. Ann Geol Surv Egypt 5:119–122

    Google Scholar 

  • Meneisy MY, Kreuzer H (1974) Potassium-Argon ages of Egyptian basaltic rock. Geol Jahrb D9:21–31

    Google Scholar 

  • Middlemost EAK (1975) The basalt clan. Earth Sci Rev 11:337–364

    Article  Google Scholar 

  • Morimoto N, Fabries J, Ferguson AK, Ginzburg IV, Ross M, Seifert FA, Zussman J, Aoki K, Gottardi G (1988) Nomenclature of pyroxenes. Mineral Mag 52:535–550

    Article  Google Scholar 

  • Nimis P (1995) A clinopyroxene geobarometer for basaltic systems based on crystal structure modeling. Contrib Mineral Petrol 121:115–125

    Article  Google Scholar 

  • Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Mineral Petrol 139:541–554

    Article  Google Scholar 

  • Pearce TH (1968) A contribution to the theory of variation diagrams. Contrib Mineral Petrol 19:142–157

    Article  Google Scholar 

  • Pearce JA, Cann JR (1973) Tectonic setting of basic volcanic rocks determined using trace element analysis. Earth Planet Sci Lett 19:290–300

    Article  Google Scholar 

  • Pik R, Deniel C, Coulon C, Yirgu G, Hofmann C, Ayalew D (1998) The northwestern Ethiopian plateau flood basalts. Classification and spatial distribution of magma types. J Volcanol Geotherm Res 81:91–111

    Article  Google Scholar 

  • Pik R, Deniel C, Coulon C, Yirgu G, Marty B (1999) Isotopic and trace element signatures of Ethiopian flood basalts: evidence for plume-lithosphere interactions. Geochim Cosmochim Acta 63:2263–2279

    Article  Google Scholar 

  • Putirka K (2008) Thermometers and barometers for volcanic systems. In: Putrika K, Telepy F (eds), Minerals, Inclusions and Volcanic Processes. Reviews in Mineralogy Geochemistry 69: 61–120

  • Roussel N (1986) Dynamique sédimentaire des series Miocènes de la région de Quseir (Egypte), bordure NW de la Mer Rouge. Thèse 3ème cycle Université de Paris-Sud. 1–191

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33:267–309

    Article  Google Scholar 

  • Russell JK, Nicholls J (1988) Analysis of petrologic hypotheses with Pearce element ratios. Contrib Mineral Petrol 99:25–35

    Article  Google Scholar 

  • Sabet AH (1958) Geology of some dolerite flows, south of El-Quseir. Egypt J Geol 2:45–58

    Google Scholar 

  • Salem A, Aboud E, Elsirafy A, Ushijima K (2005) Structural mapping of Quseir area, northern Red Sea, Egypt, using high-resolution aeromagnetic data. Earth Planets Space 57:761–765

    Article  Google Scholar 

  • Schandelmeier H, Reynolds PO (1997) Paleogeographic–Paleotectonic atlas of north-eastern Africa, Arabia, and adjacent areas. Balkema, Rotterdam 160 pp

    Google Scholar 

  • Shallaly NA, Beier C, Haase KM, Hammed MS (2013) Petrology and geochemistry of the Tertiary Suez rift volcanism, Sinai, Egypt. J Volcanol Geotherm Res 267:119–137

    Article  Google Scholar 

  • Shaw DM (1967) Trace element fractionation during anatexis. Geochim Cosmochim Acta 34:237–243

    Article  Google Scholar 

  • Shaw JE, Baker JA, Menzies MA, Thirlwall MF, Ibrahim KM (2003) Petrogenesis of the largest intraplate volcanic field on the Arabian plate (Jordan): a mixed lithosphere–asthenosphere source activated by lithospheric extension. J Petrol 44:1657–1679

    Article  Google Scholar 

  • Sherif HM (2007) Petrography, geochemistry and K–Ar ages of Paleogene basalts, west Shalatein, south Eastern Desert, Egypt. The Fifth International Conference on the Geology of Africa, 23–24 October 2007

  • Spath A, Le Roex AP, Opiyo-Akech N (2000) The petrology of the Chyulu Hills volcanic province, southern Kenya. J Afr Earth Sci 31:337–358

    Article  Google Scholar 

  • Sun CM, Bertrand J (1991) Geochemistry of clinopyroxenes in plutonic and volcanic sequences from the Yanbian Proterozoic ophiolites (Sichuan Province, China): petrogenetic and geotectonic implications. Schweiz Mineralogische Petrologische Mitteilungen 71:243–259

    Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the Ocean Basins. Geological Society London, Special Publication 42: pp. 313–345

  • Valentine GA, Hirano N (2010) Mechanisms of low-flux intraplate volcanic fields—basin and range (North America) and northwest Pacific Ocean. Geology 38:55–58

    Article  Google Scholar 

  • Volker F, McCulloch MT (1993) Submarine basalts from the Red Sea: new Pb, Sr, and Nd isotopic data. Geophys Res Lett 20:927–930

    Article  Google Scholar 

  • Volker F, Altherr R, Jochum KP, McCulloch MT (1997) Quaternary volcanic activity of the southern Red Sea: new data and assessment of models on magma sources and Afar plume–lithosphere interaction. Tectonophysics 278:15–29

    Article  Google Scholar 

  • Walter MJ (1998) Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J Petrol 39:29–60

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Kluwer, Dordrecht 450 pp

    Book  Google Scholar 

  • Wilson M, Downes H (2006) Tertiary-Quaternary intra-plate magmatism in Europe and its relation to mantle dynamics. In: Gee DG, Stephenson RA (eds), European Lithosphere Dynamics. Geological Society of London, Memoirs 32: pp. 147–166

Download references

Acknowledgements

E.S. Farahat would like to express his gratitude to Prof. G. Hoinkes and the staff member of the Institute of Earth Science (Mineralogy and Petrology), Graz University, for their hospitality and kindness in making available some of the analytical facilities at the Institute. Critical comments and constructive reviews by M. Brenna and an anonymous referee and by editor, Paul J. Wallace, substantially improved an early version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shehata Ali.

Additional information

Editorial responsibility: P. Wallace

Electronic supplementary material

Fig. S1

(JPEG 45 kb)

Table S1

(XLSX 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahat, E.S., Ali, S. & Hauzenberger, C. Red Sea rift-related Quseir basalts, central Eastern Desert, Egypt: Petrogenesis and tectonic processes. Bull Volcanol 79, 9 (2017). https://doi.org/10.1007/s00445-016-1092-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1092-6

Keywords

Navigation