Skip to main content
Log in

The use of biotite trace element compositions for fingerprinting magma batches at Las Cañadas volcano, Tenerife

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Accurate identification of individual volcanic events in the field is crucial for constraining eruption volumes and calculating recurrence intervals between eruptive episodes. Due to complexities of pyroclastic transport and deposition and intra-unit textural variability, such identification can be challenging. We present a novel method for fingerprinting ignimbrites via trace element chemistry (V, Co, Nb) in biotite by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Using samples from the alkaline magmatic series of Tenerife, we are able to demonstrate (1) clustering of previously characterized units into distinct, homogeneous groups based on V, Co, and Nb concentrations in biotite, despite the presence of extreme variation and zonation in other trace elements (Ba, Sr, Rb) that indicate complex petrogenetic processes, and (2) biotite compositions are similar throughout a deposit and relatively independent of stratigraphic height or juvenile clast texture (crystal-rich vs crystal-poor). Our results show that trace elements in biotite can be used to fingerprint eruptions and correlate geographically separated volcanic deposits, including those preserved in offshore turbidite records.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ablay G, Carroll M, Palmer M, Martí J, Sparks R (1998) Basanite–phonolite lineages of the Teide–Pico Viejo volcanic complex, Tenerife, Canary Islands. J Petrol 39:905–936

    Article  Google Scholar 

  • Acosta-Vigil A, Buick I, Hermann J, Cesare B, Rubatto D, London D, Morgan GB (2010) Mechanisms of crustal anatexis: a geochemical study of partially melted metapelitic enclaves and host dacite, SE Spain. J Petrol 51:785–821

    Article  Google Scholar 

  • Albert H, Costa F, Martí J (2015) Timing of magmatic processes and unrest associated with mafic historical monogenetic eruptions in Tenerife Island. J Petrol egv058

  • Ancochea E, Fuster J, Ibarrola E, Cendrero A, Coello J, Hernan F, Cantagrel J, Jamond C (1990) Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. J Volcanol Geotherm Res 44:231–249

    Article  Google Scholar 

  • Ancochea E, Huertas M, Cantagrel J, Coello J, Fúster J, Arnaud N, Ibarrola E (1999) Evolution of the Cañadas edifice and its implications for the origin of the Cañadas caldera (Tenerife, Canary Islands). J Volcanol Geotherm Res 88:177–199

    Article  Google Scholar 

  • Andújar J, Costa F, Martí J, Wolff JA, Carroll M (2008) Experimental constraints on pre-eruptive conditions of phonolitic magma from the caldera-forming el Abrigo eruption, Tenerife (Canary Islands). Chem Geol 257:173–191

  • Araña V, Martí J, Aparicio A, García-Cacho L, García-García R (1994) Magma mixing in alkaline magmas: an example from Tenerife, Canary Islands. Lithos 32:1–19

    Article  Google Scholar 

  • Bachmann O, Deering CD, Lipman PW, Plummer C (2014) Building zoned ignimbrites by recycling silicic cumulates: insight from the 1,000 km3 Carpenter Ridge Tuff, CO. Contrib Mineral Petrol 167:1–13

    Article  Google Scholar 

  • Blanco JJA (1989) Estudio volcanoestratigráfico y volcanológico de los piroclastos sálicos de sur de Tenerife: Universidad de La Laguna

  • Branney MJ, Kokelaar BP (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society of London

  • Brown RJ, Barry T, Branney M, Pringle M, Bryan S (2003) The quaternary pyroclastic succession of southeast Tenerife, Canary Islands: explosive eruptions, related caldera subsidence, and sector collapse. Geol Mag 140:265–288

  • Brown RJ, Branney M (2004a) Event-stratigraphy of a caldera-forming ignimbrite eruption on Tenerife: the 273 ka Poris Formation. Bull Volcanol 66:392–416

  • Brown RJ, Branney MJ (2004b) Bypassing and diachronous deposition from density currents: evidence from a giant regressive bed form in the Poris ignimbrite, Tenerife, Canary Islands. Geology 32:445–448

  • Bryan S (2006) Petrology and geochemistry of the quaternary caldera-forming, phonolitic Granadilla eruption, Tenerife (Canary Islands). J Petrol 47:1557–1589

    Article  Google Scholar 

  • Bryan S, Martí J, Cas R (1998) Stratigraphy of the Bandas del Sur Formation: an extracaldera record of quaternary phonolitic explosive eruptions from the Las Cañadas edifice, Tenerife (Canary Islands). Geol Mag 135:605–636

    Article  Google Scholar 

  • Bryan S, Marti J, Leosson M (2002) Petrology and geochemistry of the bandas del Sur formation, Las Cañadas edifice, Tenerife (Canary Islands). J Petrol 43:1815–1856

    Article  Google Scholar 

  • Carracedo JC, Badiola ER, Guillou H, Paterne M, Scaillet S, Torrado FP, Paris R, Fra-Paleo U, Hansen A (2007) Eruptive and structural history of Teide Volcano and rift zones of Tenerife, Canary Islands. Geol Soc Am Bull 119:1027–1051

  • Dávila-Harris P (2009) Explosive ocean-island volcanism: the 1.8–0.7 Ma explosive eruption history of Cañadas volcano recorded by the pyroclastic successions around Adeje and Abona, southern Tenerife, Canary Islands. University of Leicester

  • Dávila-Harris P, Ellis BS, Branney MJ, Carrasco-Núñez G (2013) Lithostratigraphic analysis and geochemistry of a vitric spatter-bearing ignimbrite: the Quaternary Adeje Formation, Cañadas volcano, Tenerife. Bull Volcanol 75:1–15

  • De Silva S, Francis P (1989) Correlation of large ignimbrites—two case studies from the Central Andes of Northern Chile. J Volcanol Geotherm Res 37:133–149

    Article  Google Scholar 

  • Desborough GA, Pitman JK, Donnell JR (1973) Microprobe analysis of biotites-A method of correlating tuff beds in the Green River Formation, Colorado and Utah. Journal of Research of the US Geological Survey 1(1):39–44

  • Donato P, Albert P, Crocitti M, De Rosa R, Menzies M (2016) Tephra layers along the southern Tyrrhenian coast of Italy: links to the X-5 & X-6 using volcanic glass geochemistry. J Volcanol Geotherm Res 317:30–41

    Article  Google Scholar 

  • Dorais MJ, Whitney JA, Stormer JC Jr (1991) Mineralogical constraints on the petrogenesis of trachytic inclusions, Carpenter ridge tuff, Central San Juan volcanic field, Colorado. Contrib Mineral Petrol 107:219–230

    Article  Google Scholar 

  • Dymek R (1983) Titanium, aluminum and interlayer cation substitutions in biotite from high-grade gneisses’ West Greenland. Am Mineral 6:880–399

    Google Scholar 

  • Edgar CJ, Wolff JA, Nichols H, Cas R, Martí J (2002) A complex quaternary ignimbrite-forming phonolitic eruption: the Poris member of the Diego Hernández Formation (Tenerife, Canary Islands). J Volcanol Geotherm Res 118:99–130

  • Edgar CJ, Wolff JA, Olin PH, Nichols H, Pittari A, Cas R, Reiners P, Spell T, Martí J (2007) The late Quaternary Diego Hernandez Formation, Tenerife: volcanology of a complex cycle of voluminous explosive phonolitic eruptions. J Volcanol Geotherm Res 160:59–85

  • Eichelberger JC, Chertkoff DG, Dreher ST, Nye CJ (2000) Magmas in collision: rethinking chemical zonation in silicic magmas. Geology 28:603–606

    Article  Google Scholar 

  • Ellis BS, Mark DF, Pritchard CJ, Wolff JA (2012) Temporal dissection of the Huckleberry Ridge Tuff using the 40 Ar/39 Ar dating technique. Quat Geochronol 9:34–41

    Article  Google Scholar 

  • Ewart A, Griffin W (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem Geol 117:251–284

    Article  Google Scholar 

  • Forni F, Bachmann O, Mollo S, De Astis G, Gelman SE, Ellis BS (2016) The origin of a zoned ignimbrite: insights into the Campanian Ignimbrite magma chamber (Campi Flegrei, Italy). Earth Planet Sci Lett 449:259–271

    Article  Google Scholar 

  • Forni F, Ellis BS, Bachmann O, Lucchi F, Tranne CA, Agostini S, Dallai L (2015) Erupted cumulate fragments in rhyolites from Lipari (Aeolian Islands). Contrib Mineral Petrol 170:1–18

    Article  Google Scholar 

  • Francalanci L, Taylor S, McCulloch M, Woodhead J (1993) Geochemical and isotopic variations in the calc-alkaline rocks of Aeolian arc, southern Tyrrhenian Sea, Italy: constraints on magma genesis. Contrib Mineral Petrol 113:300–313

    Article  Google Scholar 

  • Guillong M, Meier D, Allan M, Heinrich C, Yardley B (2008) SILLS: a MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineralogical Association of Canada Short Course 40:328–333

    Google Scholar 

  • Harangi S, Mason PR, Lukács R (2005) Correlation and petrogenesis of silicic pyroclastic rocks in the Northern Pannonian Basin, Eastern-Central Europe: in situ trace element data of glass shards and mineral chemical constraints. J Volcanol Geotherm Res 143:237–257

    Article  Google Scholar 

  • Haynes JT, Melson WG, Kunk MJ (1995) Composition of biotite phenocrysts in Ordovician tephras casts doubt on the proposed trans-Atlantic correlation of the Millbrig K-bentonite (United States) and the Kinnekulle K-bentonite (Sweden). Geology 23(9):847

  • Hazen R, Wones D (1972) Effect of cation substitutions on physical properties of trioctahedral micas. Am Mineral 57:103–129

    Google Scholar 

  • Hildreth W (1979) The Bishop Tuff: evidence for the origin of compositional zonation in silicic magma chambers. Geol Soc Am Spec Pap 180:43–75

    Google Scholar 

  • Hildreth W (1981) Gradients in silicic magma chambers: implications for lithospheric magmatism. J Geophys Res: Solid Earth 86:10153–10192

    Article  Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    Article  Google Scholar 

  • Hoernle K (1998) Geochemistry of Jurassic oceanic crust beneath Gran Canaria (Canary Islands): implications for crustal recycling and assimilation. J Petrol 39:859–880

    Article  Google Scholar 

  • Hunt J, Talling P, Clare M, Jarvis I, Wynn R (2014) Long-term (17 Ma) turbidite record of the timing and frequency of large flank collapses of the Canary Islands. Geochem Geophys Geosyst 15:3322–3345

    Article  Google Scholar 

  • Huertas MJ, Arnaud NO, Ancochea E, Cantagrel JM, Fúster JM (2002) 40Ar/39Ar stratigraphy of pyroclastic units from the Cañadas Volcanic Edifice (Tenerife, Canary Islands) and their bearing on the structural evolution. J Volcanol Geotherm Res 115(3):351–365

  • Le Friant A, Ishizuka O, Boudon G, Palmer M, Talling P, Villemant B, Adachi T, Aljahdali M, Breitkreuz C, Brunet M (2015) Submarine record of volcanic island construction and collapse in the lesser Antilles arc: first scientific drilling of submarine volcanic island landslides by IODP Expedition 340. Geochem Geophys Geosyst 16:420–442

    Article  Google Scholar 

  • Lipman PW (1967) Mineral and chemical variations within an ash-flow sheet from Aso caldera, southwestern Japan. Contrib Mineral Petrol 16:300–327

    Article  Google Scholar 

  • Luhr JF, Carmichael IS (1980) The colima volcanic complex, Mexico. Contrib Mineral Petrol 71:343–372

    Article  Google Scholar 

  • Mahood GA, Hildreth W (1986) Geology of the peralkaline volcano at Pantelleria, Strait of Sicily. Bull Volcanol 48:143–172

    Article  Google Scholar 

  • Mark DF, Petraglia M, Smith VC, Morgan LE, Barfod DN, Ellis BS, Pearce NJ, Pal J, Korisettar R (2014) A high-precision 40 Ar/39 Ar age for the young Toba tuff and dating of ultra-distal tephra: forcing of quaternary climate and implications for hominin occupation of India. Quat Geochronol 21:90–103

    Article  Google Scholar 

  • Martí J, Mitjavila J, Araña V (1994) Stratigraphy, structure and geochronology of the las Cañadas caldera (Tenerife, Canary Islands). Geol Mag 131:715–727

    Article  Google Scholar 

  • Martí J, Mitjavila J, Villa I (1990) Stratigraphy and K-Ar ages of the Diego Hernández wall and their significance on the Las Cañadas Caldera formation (Tenerife, Canary Islands). Terra Nov. 2:148–153

  • Mason BG, Pyle DM, Oppenheimer C (2004) The size and frequency of the largest explosive eruptions on Earth. Bull Volcanol 66:735–748

    Article  Google Scholar 

  • McIntosh WC, Sutter JF, Chapin CE, Kedzie LL (1990) High-precision 40Ar/39Ar sanidine geochronology of ignimbrites in the Mogollon-Datil volcanic field, southwestern New Mexico. Bull Volcanol 52:584–601

    Article  Google Scholar 

  • Menard HW (1956) Archipelagic aprons. AAPG Bull 40:2195–2210

    Google Scholar 

  • Mitjavila J (1990) Aplicació de tècniques de geoquimica isotòpica i de geocronologia a l’estudi volcanologic de l’edifici de Diego Hernández i la seva relació amb la Caldera de Las Cañadas (Tenerife). PhD thesis, Univ. of Barcelona (microfilm no. 1312), Spain

  • Nash W, Crecraft H (1985) Partition coefficients for trace elements in silicic magmas. Geochim Cosmochim Acta 49:2309–2322

    Article  Google Scholar 

  • Olin PH (2007) Magma dynamics of the phonolitic Diego Hernández Formation, Tenerife, Canary Islands. Washington State University

  • Olin PH, Wolff JA (2012) Partitioning of rare earth and high field strength elements between titanite and phonolitic liquid. Lithos 128:46–54

    Article  Google Scholar 

  • Ort MH, Porreca M, Geissman JW (2015) The use of palaeomagnetism and rock magnetism to understand volcanic processes: introduction. Geol Soc Lond, Spec Publ 396:1–11

    Article  Google Scholar 

  • Pearce NJ, Westgate JA, Perkins WT (1996) Developments in the analysis of volcanic glass shards by laser ablation ICP-MS: quantitative and single internal standard-multielement methods. Quat Int 34:213–227

    Article  Google Scholar 

  • Robertson A, Stillman C (1979) Late Mesozoic sedimentary rocks of Fuerteventura, Canary Islands: implications for West African continental margin evolution. J Geol Soc 136:47–60

    Article  Google Scholar 

  • Sarna-Wojcicki AM, Bowman H, Meyer CE, Russell P, Woodward M, McCoy G, Rowe Jr J, Baedecker P, Asaro F, Michael H (1984) Chemical analyses, correlations, and ages of upper Pliocene and Pleistocene ash layers of east-central and southern California

  • Schmincke HU, Sumita M (1998) Volcanic evolution of Gran Canaria Reconstructed from apron sediments: Synthesis of Vicap Project Drilling 27

  • Schoene B, Guex J, Bartolini A, Schaltegger U, Blackburn TJ (2010) Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level. Geology 38:387–390

    Article  Google Scholar 

  • Shane P (2000) Tephrochronology: a New Zealand case study. Earth Sci Rev 49:223–259

    Article  Google Scholar 

  • Shane P, Smith V, Nairn I (2003) Biotite composition as a tool for the identification of quaternary tephra beds. Quat Res 59:262–270

    Article  Google Scholar 

  • Sliwinski J (2014) Eruption of shallow crystal cumulates during Caldera-forming events on Tenerife, Canary Islands. ETH

  • Sliwinski JT, Bachmann O, Ellis BS, Dávila-Harris P, Nelson BK, Dufek J (2015) Eruption of shallow crystal cumulates during explosive phonolitic eruptions on Tenerife, Canary Islands. J Petrol 56:2173–2194

  • Smith VC, Isaia R, Pearce N (2011a) Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers. Quat Sci Rev 30:3638–3660

  • Smith VC, Pearce NJ, Matthews NE, Westgate JA, Petraglia MD, Haslam M, Lane CS, Korisettar R, Pal J (2011b) Geochemical fingerprinting of the widespread Toba tephra using biotite compositions. Quat Int 246:97–104

    Article  Google Scholar 

  • Smith VC, Shane P, Smith I (2002) Tephrostratigraphy and geochemical fingerprinting of the Mangaone subgroup tephra beds, Okataina volcanic centre, New Zealand. N Z J Geol Geophys 45:207–219

    Article  Google Scholar 

  • Solana MC (2012) Development of unconfined historic lava flow fields in Tenerife: implications for the mitigation of risk from a future eruption. Bull Volcanol 74:2397–2413

    Article  Google Scholar 

  • Stepanov AS, Hermann J (2013) Fractionation of Nb and Ta by biotite and phengite: implications for the “missing Nb paradox”. Geology 41:303–306

    Article  Google Scholar 

  • Szymanowski D, Ellis BS, Bachmann O, Guillong M, Phillips WM (2015) Bridging basalts and rhyolites in the Yellowstone–Snake River Plain volcanic province: the elusive intermediate step. Earth Planet Sci Lett 415:80–89

    Article  Google Scholar 

  • Thirlwall M, Singer B, Marriner G (2000) 39Ar–40Ar ages and geochemistry of the basaltic shield stage of Tenerife, Canary Islands, Spain. J Volcanol Geotherm Res 103:247–297

    Article  Google Scholar 

  • Ukstins-Peate I, Baker JA, Kent AJ, Al-Kadasi M, Al-Subbary A, Ayalew D, Menzies M (2003) Correlation of Indian Ocean tephra to individual Oligocene silicic eruptions from Afro-Arabian flood volcanism. Earth Planet Sci Lett 211:311–327

    Article  Google Scholar 

  • Vidal CM, Komorowski JC, Métrich N, Pratomo I, Kartadinata N, Prambada O, Michel A, Carazzo G, Lavigne F, Rodysill J (2015) Dynamics of the major plinian eruption of Samalas in 1257 AD (Lombok, Indonesia). Bull Volcanol 77:1–24

  • Villemant B (1988) Trace element evolution in the Phlegrean Fields (Central Italy): fractional crystallization and selective enrichment. Contrib Mineral Petrol 98:169–183

    Article  Google Scholar 

  • Walker G (1981) Plinian eruptions and their products. Bull Volcanol 44:223–240

    Article  Google Scholar 

  • Waters AC (1961) Stratigraphic and lithologic variations in the Columbia River basalt. Am J Sci 259:583–611

    Article  Google Scholar 

  • Watts A, Masson D (1995) A giant landslide on the north flank of Tenerife, Canary Islands. J Geophys Res: Solid Earth 100:24487–24498

    Article  Google Scholar 

  • Westgate J, Perkins W, Fuge R, Pearce N, Wintle A (1994) Trace-element analysis of volcanic glass shards by laser ablation inductively coupled plasma mass spectrometry: application to tephrochronological studies. Appl Geochem 9:323–335

    Article  Google Scholar 

  • Williams R, Branney MJ, Barry TL (2014) Temporal and spatial evolution of a waxing then waning catastrophic density current revealed by chemical mapping. Geology 42:107–110

    Article  Google Scholar 

  • Wolff JA (1985) Zonation, mixing and eruption of silica-undersaturated alkaline magma: a case study from Tenerife, Canary Islands. Geol Mag 122:623–640

  • Wolff JA, Ellis BS, Ramos F, Starkel W, Boroughs S, Olin PH, Bachmann O (2015) Remelting of cumulates as a process for producing chemical zoning in silicic tuffs: A comparison of cool, wet and hot, dry rhyolitic magma systems. Lithos 275–286

  • Wolff JA, Grandy J, Larson P (2000) Interaction of mantle-derived magma with island crust? Trace element and oxygen isotope data from the Diego Hernandez Formation, Las Cañadas, Tenerife. J Volcanol Geotherm Res 103:343–366

  • Wolff JA, Storey M (1984) Zoning in highly alkaline magma bodies. Geol Mag 121:563–575

  • Wörner G, Schmincke H (1984) Mineralogical and chemical zonation of the Laacher see tephra sequence (East Eifel, W. Germany). J Petrol 25:805–835

    Article  Google Scholar 

  • Wotzlaw JF, Hüsing SK, Hilgen FJ, Schaltegger U (2014) High-precision zircon U–Pb geochronology of astronomically dated volcanic ash beds from the Mediterranean Miocene. Earth Planet Sci Lett 407:19–34

  • Yen FS, Goodwin JH (1976) Correlation of tuff layers in the Green River Formation, Utah using biotite compositions. J Sediment Res 46(2):345–354

Download references

Acknowledgments

We would like to thank Alina Fiedrich for assistance in the field and Lukas Martin for his help in microprobe analysis. Wolff and Olin’s Tenerife work was funded by NSF grant EAR0001013. Sliwinski, Ellis, and Bachmann were funded by Swiss NSF grant 200021_166281.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. T. Sliwinski.

Additional information

Editorial responsibility: P. Wallace

Electronic supplementary material

ESM 1

(XLSX 256 kb)

ESM 2

(DOCX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sliwinski, J.T., Ellis, B.S., Dávila-Harris, P. et al. The use of biotite trace element compositions for fingerprinting magma batches at Las Cañadas volcano, Tenerife. Bull Volcanol 79, 1 (2017). https://doi.org/10.1007/s00445-016-1088-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1088-2

Keywords

Navigation