Skip to main content

Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France)

Abstract

A 70-m-thick, 2200-m-long (51 × 106 m3) trachytic lava flow unit underlies the Puy de Cliergue (Mt. Dore, France). Excellent exposure along a 400-m-long and 60- to 85-m-high section allows the flow interior to be accessed on two sides of a glacial valley that cuts through the unit. We completed an integrated morphological, structural, textural, and chemical analysis of the unit to gain insights into eruption and flow processes during emplacement of this thick silicic lava flow, so as to elucidate the chamber and flow dynamic processed that operate during the emplacement of such systems. The unit is characterized by an inverse chemical stratification, where there is primitive lava beneath the evolved lava. The interior is plug dominated with a thin basal shear zone overlying a thick basal breccia, with ramping affecting the entire flow thickness. To understand these characteristics, we propose an eruption model that first involves processes operating in the magma chamber whereby a primitive melt is injected into an evolved magma to create a mixed zone at the chamber base. The eruption triggered by this event first emplaced a trachytic dome, into which banded lava from the chamber base was injected. Subsequent endogenous dome growth led to flow down the shallow slope to the east on which the highly viscous (1012 Pa s) coulée was emplaced. The flow likely moved extremely slowly, being emplaced over a period of 4–10 years in a glacial manner, where a thick (>60-m) plug slid over a thin (5-m-thick) basal shear zone. Excellent exposure means that the Puy de Cliergue complex can be viewed as a case type location for understanding and defining the eruption and emplacement of thick, high-viscosity, silicic lava flow systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  • Anderson SW, Fink JH (1992) Crease structures: indicators of emplacement rates and surface stress regimes of lava flows. Geol Soc Am Bulletin 104:615–625

    Article  Google Scholar 

  • Anderson SW, Fink JH, Rose WI (1995) Mount St. Helens and Santiaguito lava domes: the effect of short-term eruption rate on surface texture and degassing processes. J Volcanol Geother Res 69:105–l16

    Article  Google Scholar 

  • Anderson SW, Stofan ER, Plaut JJ, Crown DA (1998) Block size distributions on silicic lava flow surfaces: implications for emplacement conditions. Geol Soc Am Bulletin 110(10):1258–1267

    Article  Google Scholar 

  • Avard G, Whittington A (2012) Rheology of arc dacite lavas: experimental determination at low strain rates. Bull Volcanol 74(5):1039–1056

    Article  Google Scholar 

  • Barker SJ, Rotella MD, Wilson CJN, Wright IC, Wysoczanski RJ (2012) Contrasting pyroclast density spectra from subaerial and submarine silicic eruptions in the Kermadec arc: implications for eruption processes and dredge sampling. Bull Volcanol 74:1425–1443. doi:10.1007/s00445-012-0604-2

    Article  Google Scholar 

  • Barnes HA (1999) The yield stress—a review or ‘panta roi’—everything flows? J Non-Newton Mech 81:133–178

    Article  Google Scholar 

  • Baubron JC, Cantagrel JM (1980) Les deux volcans des Monts-Dore (Massif Central français). Comptes Rendus de l’Académie des Sciences Paris 290:1409–1412

    Google Scholar 

  • Benn D, Evans DJ (2010) Glaciers and glaciation. Routledge (Abingdon): 802 p.

  • Blake S (1990) Viscoplastic models of lava domes. In: Fink JH (ed) Lava flows and domes. Springer, Berlin, pp. 88–126

    Chapter  Google Scholar 

  • Boulton G (1996) Theory of glacial erosion, transport and deposition as a consequence of subglacial sediment deformation. J Glaciol 42(140):43–62

    Google Scholar 

  • Brousse R, Tempier P, Veyret-Mekdjian Y (1989) Notice explicative de la carte géologique de la France au 1/50 000, feuille Bourg-Lastic. In: éditions du BRGM, Orléans

  • Cantagrel J, Baubron J (1983) Chronologie des éruptions dans le massif volcanique des Monts Dore (méthode potassium-argon), implications volcanologiques. Géol Fr 2(1–2):123–142

    Google Scholar 

  • Cantagrel JM, Pastre JF (2001) Téphrostratigraphie du Mont Dore/the Mont Dore tephrostratigraphy (Massif Central, France). Quaternaire 12(4):249–267

    Article  Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic successions, modern and ancient: a geological approach to processes, products, and successions. Allen & Unwin, London

    Book  Google Scholar 

  • Castro JM, Gardner JE (2008) Did magma ascent rate control the explosive-effusive transition at the Inyo volcanic chain, California? Geology 36:279–282. doi:10.1130/G24453A.1

    Article  Google Scholar 

  • Castro J, Cashman K, Joslin N, Olmsted B (2002) Structural origin of large gas cavities in the Big Obsidian Flow, Newberry Volcano. J Volacanol Geotherm Res 114:313–330

    Article  Google Scholar 

  • Castruccio A, Rust AC, Sparks RSJ (2013) Evolution of crust- and core-dominated lava flows using scaling analysis. Bull Volcanol 75:681

    Article  Google Scholar 

  • Chevrel MO, Platz T, Hauber E, Baratoux D, Lavalée Y, Dingwell DB (2013) Lava flow rheology: a comparison of morphological and petrological methods. Earth Planet Sci Lett 384:109–120

    Article  Google Scholar 

  • Chevrel MO, Guilbaud MN, Siebe C (2016) The ∼AD 1250 effusive eruption of El Metate shield volcano (Michoacán, Mexico): magma source, crustal storage, eruptive dynamics, and lava rheology. Bull Volcanol 78:32. doi:10.1007/s00445-016-1020-9

    Article  Google Scholar 

  • Cioni R, Funedda A (2005) Structural geology of crystal-rich, silicic lava flows: a case study from San Pietro Island (Sardinia, Italy). Special papers-GSA 396:1

    Google Scholar 

  • Costa A, Wadge G, Melnik O (2012) Cyclic extrusion of a lava dome based on a stick-slip mechanism. Earth Planet Sci Lett 337–338:39–46

    Article  Google Scholar 

  • Dadd KA (1992) Structures within large volume rhyolite lava flows of the Devonian Comerong Volcanics, southeastern Australia, and the Pleistocene Ngongotaha lava dome, New Zealand. J Volcanol Geotherm Res 54:33–51

    Article  Google Scholar 

  • De Angelis SH, Larsen J, Coombs M, Dunn A, Hayden L (2015) Amphibole reaction rims as a record of pre-eruptive magmatic heating: an experimental approach. Earth Planet Sci Lett 426:235–245

    Article  Google Scholar 

  • de Silva SL, Self S, Francis P, Drake R, Carlos RR (1994) Effusive silicic volcanism in the Central Andes: the Chao dacite and other young lavas of the Altiplano-Puna volcanic complex. J Geophys Res 99(B9):17805–17825

    Article  Google Scholar 

  • Denlinger RP, Hoblitt R (1999) Cyclic eruptive behavior of silicic volcanoes. Geology 27(5):459–462

  • Didier J, Renouf JT (1973) Granites and their enclaves: the bearing of enclaves on the origin of granites. Elsevier, Amsterdam

    Google Scholar 

  • Dixon JE, Clague DA, Wallace P, Poreda R (1997) Volatiles in alkalic basalts form the North Arch volcanic field, Hawaii: extensive degassing of deep submarine-erupted alkalic series lavas. J Petrol 38(7):911–939

    Article  Google Scholar 

  • Dutton CE (1883) Hawaiian volcanoes, 2005 edn. University of Hawaii Press, Honolulu 235 p

    Google Scholar 

  • Eichelberger JC (1980) Vesiculation of mafic magma during replenishment of silicic magma reservoirs, Nature 288:446–450 doi:10.1038/288446a0

  • Eichelberger JC, Westrich HR (1981) Magmatic volatiles in explosive rhyolitic eruptions, Geophys. Res. Lett. 8(7):757–760. doi: 10.1029/GL008i007p00757

  • Ercan T, Turkecan A, Karabiyikoglu M (1994) Neogene and Quaternary volcanics of Cappadocia. IAVCEI field excursion guide, IAVCEI general assembly, Ankara, pp. 12–16

    Google Scholar 

  • Falloon TJ, Danyushevsky LV (2000) Melting of refractory mantle at 1.5, 2 and 2.5 GPa under anhydrous and H2O-undersaturated conditions: implications for the petrogenesis of high-Ca boninites and the influence of subduction components on mantle melting. J Petrol 41:257–283

    Article  Google Scholar 

  • Farquharson JL, James MR, Tuffen H (2015) Examining rhyolite lava flow dynamics through photo-based 3D reconstructions of the 2011–2012 lava flow field at Cordón-Caulle, Chile. J Volcanol Geother Res 304:336–348

    Article  Google Scholar 

  • Finch RH (1933) Block lava. J Geology 41(7):769–770

    Article  Google Scholar 

  • Fink J (1980b) Surface folding and viscosity of rhyolite flows. Geology 8:250–254

    Article  Google Scholar 

  • Fink J (1983) Structure and emplacement of a rhyolitic obsidian flow: Little Glass Mountain, Medicine Lake Highland, Northern California. Geol Soc Am Bulletin 94:362–380

    Article  Google Scholar 

  • Fink JH, Griffiths RW (1998) Morphology, eruption rates and rheology of lava domes: insights from laboratory models. J Geophys Res 103(B1):527–554

    Article  Google Scholar 

  • Forbes JD (1846) Illustrations of the viscous theory of glacier motion. Part I. Containing experiments on the flow of plastic bodies, and observations on the phenomena of lava streams. Philos Trans R Soc Lond 136:143–155

    Article  Google Scholar 

  • Ford C, Russell D, Craven J, Fisk M (1983) Olivine-liquid equilibria: temperature, pressure and composition dependence of the crystal/liquid cation partition coefficients for Mg, Fe2+, Ca and Mn. J Petrol 24(3):256–266

    Article  Google Scholar 

  • Ghiorso MS, Evans BW (2008) Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe-Ti two-oxide geothermometer and oxygen-barometer. Am J Science 308(9):957–1039

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271(1):123–134

    Article  Google Scholar 

  • Goodsell B, Hambrey MJ, Glasser NF (2002) Formation of band ogives and associated structures at Bas Glacier d’Arolla, Valais, Switzerland. J Glaciol 48(161):287–300

    Article  Google Scholar 

  • Gourgaud A, Maury RC (1984) Magma mixing in alkaline series: an example from Sancy volcano (Mont-Dore, Massif Central, France). Bull Volcanol 47(4):827–847

    Article  Google Scholar 

  • Gregg TKP, Fink JH, Griffiths RW (1998) Formation of multiple fold generations on lava flow surfaces: influence of strain rate, cooling rate, and lava composition. J Volcanol Geotherm Res 80:281–292

    Article  Google Scholar 

  • Harris AJL, Flynn LP, Matías O, Rose WI (2002) The thermal stealth flows of Santiaguito: implications for the cooling and emplacement of dacitic block lava flows. Geol Soc Am Bull 114(5):533–546

    Article  Google Scholar 

  • Harris AJL, Flynn LP, Rose WI (2003) Temporal trends in lava dome extrusion at Santiaguito 1922-2000. Bull Volcanol 65:77–89

    Google Scholar 

  • Harris AJL, Flynn LP, Matias O, Rose WI, Cornejo J (2004) The evolution of an active silicic lava flow field: an ETM+ perspective. J Volcanol Geother Res 135(1–2):147–168

    Article  Google Scholar 

  • Hess K, Dingwell DB (1996) Viscosities of hydrous leucogranitic melts: a non-Arrhenian model. Am Mineral 81:1297–1300

    Google Scholar 

  • Holland T, Blundy J (1994) Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contr Mineral Petrol 116(4):433–447

    Article  Google Scholar 

  • Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51(6):451–462

    Article  Google Scholar 

  • Hulme G (1974) The interpretation of lava flow morphology. Geophys J Royal Astron Soc 39:361–383

    Article  Google Scholar 

  • Kreiger IM, Dougherty TJ (1959) A mechanism for non-Newtonian flow in suspensions of rigid spheres. J Rheol 3:137

    Google Scholar 

  • Latutrie B (2012) L’unité épaisse du Puy de Cliergue est elle effusive ou pyroclastiques (caractérisation chimique et texturale)? Mémoire de Master 1. Laboratoire Magmas et Volcans, Clermont Ferrand 20 p

    Google Scholar 

  • Latutrie B (2013) Characterization of a thick trachytic flow unit of the Puy de Cliergue through lithofacies and textural analyses of the deposits. Mémoire de Master 2. Laboratoire Magmas et Volcans, Clermont Ferrand 50 p

    Google Scholar 

  • Lavina P (1985) Le volcan du Sancy « Massif Adventif » (Massif des Monts Dore, Massif Central français): Etudes volcanologiques et structurales. PhD thesis, Université de Clermont-Ferrand II, Clermont Ferrand, 211 p

  • Leduc L, Gurioli L, Harris AJL, Colò L, Rose-Koga E (2015) Dynamics of a gas-dominated strombolian explosion. Bull Volcanol 77:8. doi:10.1007/s00445-014-0888-5

    Article  Google Scholar 

  • Lensky NG, Sparks RSJ, Navon O, Lyakhovsky V (2008) Cyclic activity at Soufrière Hills Volcano, Montserrat: degassing-induced pressurization and stick-slip extrusion. Geol Soc Lond, Spec Publ 307:169–188. doi:10.1144/SP307.10

  • Lescinsky DT, Skoblenick SV, Mansinha L (2007) Automated identification of lava flow structures using local Fourier spectrum of digital elevation data. J Geophys Res 112(B05212). doi:10.1029/2006JB004263

  • Macdonald GA (1953) Pahoehoe, aa, and block lava. Am J Sci 251(3):169–191

    Article  Google Scholar 

  • Macdonald GA (1972) Volcanoes. Prentice Hall, Englewood Cliffs 510 p

    Google Scholar 

  • MacKay ME, Rowland SK, Mouginis-Mark PJ, Garbeil H (1998) Thick lava flows of Karisimbi Volcano, Rwanda: insights from SIR-C interferometric topography. Bull Volcanol 60:239–251

    Article  Google Scholar 

  • Manley CR (1992) Extended cooling and viscous flow of large, hot rhyolite lavas: implications of numerical modeling results. J Geophys Res 53:27–46

    Google Scholar 

  • Manley CR (1996a) Physical volcanology of a voluminous rhyolite flow: the Badlands lava, Owyhee Plateau, southwestern Idaho. J Volcanol Geotherm Res 71:129–153

    Article  Google Scholar 

  • Manley CR (1996b) In situ formation of welded tuff-like textures in the carapace of a voluminous silicic lava flow, Owyhee County, SW Idaho. Bull Volcanol 57:672–686

    Article  Google Scholar 

  • Manley CR, Fink JH (1987) Internal textures of rhyolite flows as revealed by research drilling. Geology 15:549–552

    Article  Google Scholar 

  • Martel C, Champallier R, Prouteau G, Pichavant M, Arbaret L, Balcone-Boissard H, Boudon G, Boivin P, Bourdier J-L, Scaillet B (2013) Trachyte phase relations and implication for magma storage conditions in the Chaîne des Puys (French Massif Central). J Petrol 54(6):1071–1107. doi:10.1093/petrology/egt006

    Article  Google Scholar 

  • Martin VM, Holness MB, Pyle DM (2006a) Textural analysis of magmatic enclaves from the Kameni Islands, Santorini, Greece. J Volcanol Geotherm Res 54:89–102

    Article  Google Scholar 

  • Martin VM, Pyle DM, Holness MB (2006b) The role of crystal frameworks in the preservation of enclaves during magma mixing. Earth Planet Sci Lett 248:787–799

    Article  Google Scholar 

  • Masotta M, Mollo S, Freda C, Gaeta M, Moore G (2013) Clinopyroxene–liquid thermometers and barometers specific to alkaline differentiated magmas. Contr Mineral Petrol 166(6):1545–1561

    Article  Google Scholar 

  • Médard E, Grove TL (2008) The effect of H2O on the olivine liquidus of basaltic melts: experiments and thermodynamic models. Contr Mineral Petrol 155(4):417–432

    Article  Google Scholar 

  • Moore HJ (1987), Preliminary estimates of the rheological properties of 1984 Mauna Loa Lava, U.S. Geol. Surv. Prof. Pap 1350:1569–1588

  • Mueller S, Llewellin EW, Mader HM (2010) The rheology of suspensions of solid particles. Phil Trans R Soc Lond A 466:1201–1228

    Google Scholar 

  • Nakada S, Miyake Y, Sato H, Oshima O, Fujinawa A (1995) Endogenous growth of dacite dome at Unzen volcano (Japan), 1993–1994. Geology 23(2):157–160

    Article  Google Scholar 

  • Navarro-Ochoa C, Gavilanes-Ruíz JC, Cotés-Cortés A (2002) Movement and emplacement of lava flows at Volcán de Colima, México: November 1998–February 1999. J Volcanol Geotherm Res 117:155–167

    Article  Google Scholar 

  • Nehlig P, Boivin P, De Goër de Hervé A, Mergoil J, Prouteau G, Thiéblemont D (2001) Les volcans du Massif central. Géologues Paris 130–131:66–91

  • Nichols RT (1938) Grooved lava. J Geology 46:601–614

    Article  Google Scholar 

  • Nomade S, Pastre J-F, Nehlig P, Guillou H, Scao V, Scaillet S (2014) Tephrochronology of the Mont-Dore volcanic massif (Massif Central, France): new 40Ar/39Ar constraints on the Late Pliocene and Early Pleistocene activity. Bull Volcanol 76(3):1–17

    Article  Google Scholar 

  • Nomade S, Scaillet S, Pastre J-F, Nehlig P (2012) Pyroclastic chronology of the Sancy stratovolcano (Mont-Dore, French Massif Central): new high-precision 40Ar/39Ar constraints. J Volcanol Geother Res 225–226:1–12

    Article  Google Scholar 

  • Ondrusek J, Christensen PR, Fink JH (1993) Mapping the distribution of vesicular textures on silicic lavas using the thermal infrared multispectral scanner. J Geophys Res 98(B9):15903–15908

    Article  Google Scholar 

  • Polacci M, Pioli L, Rosi M (2003) The Plinian phase of the Campanian Ignimbrite eruption (Phlegrean Fields, Italy): evidence from density measurements and textural characterization of pumice. Bull Volcanol 65:418–432

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. In: Putirka KD, Tepley FJ (eds) Minerals, inclusions and volcanic processes. Mineralog Soc Am, Chantilly, pp. 61–120

    Google Scholar 

  • Pyle DM, Elliott JR (2006) Quantitative morphology, recent evolution, and future activity of the Kameni Islands volcano, Santorini, Greece. Geosphere 2(5):253–268

    Article  Google Scholar 

  • Robert B, Harris A, Gurioli L, Médard E, Sehlke A, Whittington A (2014) Textural and rheological evolution of basalt flowing down a lava channel. Bull Volcanol 76:824. doi:10.1007/s00445-014-0824-8

    Article  Google Scholar 

  • Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contr Mineral Petrol 29(4):275–289

    Article  Google Scholar 

  • Romine WL, Whittington AG (2015) A simple model for the viscosity of rhyolites as a function of temperature, pressure and water content. Geochim Cosmochim Acta 170:281–300

    Article  Google Scholar 

  • Rutherford MJ, Hill PM (1993) Magma ascent rates from amphibole breakdown—an experimental study applied to the 1980-1986 Mount St-Helens eruptions. J Geophys Res 98(B11):19667–19685

    Article  Google Scholar 

  • Scaillet B, Clemente B, Evans B, Pichavant M (1998) Redox control of sulfur degassing in silicic magmas, JGR - Sold Earth 103(B10):23937–23949. doi: 10.1029/98JB02301

  • Shaw H (1972) Viscosities of magmatic silicate liquids; an empirical method of prediction. Am J Sci 272(9):870–893

    Article  Google Scholar 

  • Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010a) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geotherm Res 190(3–4):271–289

    Article  Google Scholar 

  • Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010b) SEM image processing with Photoshop. On: <http://www2.hawaii.edu/~tshea/methodsimrec.html>

  • Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010c) FOAMS: version 1.0.4—user guide. On: <http://www2.hawaii.edu/~tshea/foamsmanual.html>

  • Smith JV (1996) Ductile-brittle transition structures in the basal shear zone of a rhyolite lava flow, Eastern Australia. J Volcanol Geotherm Res 72:217–223

    Article  Google Scholar 

  • Sparks SRJ, Sigurdsson H (1977) Magma mixing: a mechanism for triggering acid explosive eruptions Nature, 267(5609):315-318

  • Sparks RSJ, Stasiuk MV, Gardeweg M, Swanson DA (1993) Welded breccias in andesite lavas. J Geol Soc Lond 150:897–902

    Article  Google Scholar 

  • Sugden D, John B (1976) Glaciers and landscape: a geomorphological approach, 376 pp. Edward Arnold, London

    Google Scholar 

  • Tuffen H, Dingwell D (2005) Fault textures in volcanic conduits: evidence for seismic trigger mechanisms during silicic eruptions. Bull Volcanol 67:370–387

    Article  Google Scholar 

  • Tuffen H, Dingwell DB, Pinkerton H (2003) Repeated fracture and healing of silicic magma generate flow banding and earthquakes? Geology 31(12):1089–1092

    Article  Google Scholar 

  • Tuffen H, James MR, Castro JM, Schipper CI (2013) Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile. Nat Commun 4(2709). doi:10.1038/ncomms3709

  • Ui T, Matsuwo N, Sumita M, Fujinawa A (1999) Generation of block and ash flows during the 1990–1995 eruption of Unzen volcano, Japan. J Volcanol Geotherm Res 89(1–4):123–137

    Article  Google Scholar 

  • Vogel TA, Eichelberger JC, Younker LW, Schuraytz BC, Horkowitz JP, Stockman HW, Westrich HR (1989) Petrology and emplacement dynamics of intrusive and extrusive rhyolites of obsidian dome, Inyo Craters volcanic chain, Eastern California. J Geophys Res 94(12):17937–17956

    Article  Google Scholar 

  • von Buch, L. (1836) Description physique des Iles Canaries. F.G. Levrault, libraire-éditeur (Paris), 525 p.

  • Wager L, Bailey E (1953) Basic magma chilled against acid magma. Nature 172:68–69

    Article  Google Scholar 

  • Walker GP (1989) Spongy pahoehoe in Hawaii: a study of vesicle-distribution patterns in basalt and their significance. Bull Volcanol 51(3):199–209

    Article  Google Scholar 

  • Wilcox RE (1944) Rhyolite-basalt complex on Gardiner River, Yellowstone Park, Wyoming. Geol Soc Am Bull 55(9):1047–1080

    Article  Google Scholar 

  • Yamamoto T, Takarada S, Suto S (1993) Pyroclastic flows from the 1991 eruption of Unzen volcano, Japan. Bull Volcanol 55(3):166–175

    Article  Google Scholar 

Download references

Acknowledgements

We thank Pierre Boivin and EAVUC for sharing their database of whole rock analyses from the Mont Dore massif. This research was financed by the French Government Laboratory of Excellence (initiative no. ANR-10-LABX-0006), the Région Auvergne, and the European Regional Development Fund. Work was also supported by the Laboratory of Excellence ClerVolc (contribution number 227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Harris.

Additional information

Editorial responsibility: J. Fierstein

Appendices

Appendix 1: Textural analyses of the different facies

We report here some examples of scanned rock faces, scanned of thin section, and SEM images for each facies.

Appendix 2: Flow dynamics model

We first calculate the critical thickness (h 0) for the lava of the Puy de Cliergue. This critical thickness corresponds to the point in the flow where shear stress (τ) is greater than the yield strength (τ 0). Above this point, the fluid will deform, and flow will occur. This point, in terms of h 0, is given by

$$ {h}_0=\frac{\tau_0}{\rho g \sin \left(\theta \right)} $$
(1)

where τ 0 here is set to 105 Pa, this being the yield strength found for Santiaguito’s dacite lavas by Harris et al. (2004); ρ is the lava density (2100 kg/m3—the mean of our samples), g is acceleration due to gravity (9.81 m/s2), and θ is the underlying slope (5°). Note: we take maximum values to obtain an upper limit on our calculations. The value of h 0 will define the thickness of the non-deforming plug in the upper part of the flow.

We next calculate the velocity profile below the non-deforming plug zone using (Moore 1987)

$$ V(z)=\frac{\rho g \sin \left(\theta \right)\times \left({h}^2-{z}^2\right)}{4\eta}\times \left[1-\frac{4{\tau}_0}{3\tau (z)}+\frac{1}{3}\times \frac{{\tau_0}^4}{3\tau {(z)}^4}\ \right] $$
(2)

where h is the flow depth (60 m) and η is the lava viscosity (108 Pa s). At the base of the flow, z = 0, increasing to z = h at the top of the flow. We apply this equation until τ = τ 0, at this point z = h 0. Here, deformation will not occur and we will define a plug that rides along on top of the shear zone. Shear stress (τ) is varied as a function of flow depth

$$ \tau (z)=\left(h-z\right)\rho g \sin \left(\theta \right) $$

Thus, τ will decrease from a maximum at the flow base to a point where τ = τ 0. At this point, deformation no longer occurs. We thus define a basal shear zone across which velocities increase to a maximum at the base of the plug. The resulting velocity profile is given in Fig. 15. Using the velocity profile, we can now calculate strain rate (ε), this being defined by dv/dz. Strain rate (in s−1) is plotted against height (in m) in Fig. 15.

Finally, we calculate the apparent viscosity profile which allows us to vary the viscosity with the strain rate following (Avard and Whittington 2012)

$$ \mathrm{Log}\ \left(\eta \right)\mathrm{app}=-0.738+9.24\times \frac{103}{T(K)}-0.654\times \log \left(\varepsilon \right) $$
(3)

The results are plotted in Fig. 15 where we see that viscosity decreases from a minimum of 104 Pa s under the high shear stress and strain rate conditions at the flow base to 105 Pa s, 4 m higher in the flow (toward the plug base).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Latutrie, B., Harris, A., Médard, E. et al. Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France). Bull Volcanol 79, 4 (2017). https://doi.org/10.1007/s00445-016-1084-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1084-6

Keywords

  • Silicic lava flow
  • Facies
  • Rheology
  • Viscous
  • Glacial emplacement model