Bulletin of Volcanology

, 78:79 | Cite as

Suitability of energy cone for probabilistic volcanic hazard assessment: validation tests at Somma-Vesuvius and Campi Flegrei (Italy)

  • Pablo Tierz
  • Laura Sandri
  • Antonio Costa
  • Lucia Zaccarelli
  • Mauro Antonio Di Vito
  • Roberto Sulpizio
  • Warner Marzocchi
Research Article


Pyroclastic density currents (PDCs) are gravity-driven hot mixtures of gas and volcanic particles which can propagate at high speed and cover distances up to several tens of kilometers around a given volcano. Therefore, they pose a severe hazard to the surroundings of explosive volcanoes able to produce such phenomena. Despite this threat, probabilistic volcanic hazard assessment (PVHA) of PDCs is still in an early stage of development. PVHA is rooted in the quantification of the large uncertainties (aleatory and epistemic) which characterize volcanic hazard analyses. This quantification typically requires a big dataset of hazard footprints obtained from numerical simulations of the physical process. For PDCs, numerical models range from very sophisticated (not useful for PVHA because of their very long runtimes) to very simple models (criticized because of their highly simplified physics). We present here a systematic and robust validation testing of a simple PDC model, the energy cone (EC), to unravel whether it can be applied to PVHA of PDCs. Using past PDC deposits at Somma-Vesuvius and Campi Flegrei (Italy), we assess the ability of EC to capture the values and variability in some relevant variables for hazard assessment, i.e., area of PDC invasion and maximum runout. In terms of area of invasion, the highest Jaccard coefficients range from 0.33 to 0.86 which indicates an equal or better performance compared to other volcanic mass-flow models. The p values for the observed maximum runouts vary from 0.003 to 0.44. Finally, the frequencies of PDC arrival computed from the EC are similar to those determined from the spatial distribution of past PDC deposits, with high PDC-arrival frequencies over an ∼8-km radius from the crater area at Somma-Vesuvius and around the Astroni crater at Campi Flegrei. The insights derived from our validation tests seem to indicate that the EC is a suitable candidate to compute PVHA of PDCs.


Pyroclastic density currents Probabilistic hazard assessment Energy cone Model validation Somma-Vesuvius Campi Flegrei 



The research leading to these results has received funding from the EU FP7 projects Numerical, Experimental, and stochastic Modelling of vOlcanic processes and Hazard (NEMOH, grant agreement no. 289976) and MEDiterranean SUpersite Volcanoes (MED-SUV, grant agreement no. 308665), from the Futuro in Ricerca 2008 FIRB Project ByMur [RBFR0880SR] financed by MIUR, the Italian Ministry for Research and Education, and from the Italian project DPC-INGV “V1: Probabilistic Volcanic Hazard Analysis,” funded by Dipartimento della Protezione Civile. Some results shown here were obtained through computational resources provided by the Center for Computational Research, University at Buffalo, NY, USA. We warmly thank Jacopo Selva for fruitful discussions on some topics presented in this manuscript, Giuseppe Vilardo for providing the DEM, and Eliana Bellucci Sessa for GIS data processing. We are extremely thankful to Sylvain Charbonnier and Domenico Doronzo for their thorough reviews, which improved the quality of the paper, and Lucia Capra and James White for all their help and careful editorial handling.

Supplementary material

445_2016_1073_MOESM1_ESM.pdf (86 kb)
ESM 1 (PDF 85.5 kb)
445_2016_1073_MOESM2_ESM.pdf (78 kb)
ESM 2 (PDF 77.7 kb)
445_2016_1073_MOESM3_ESM.pdf (128 kb)
ESM 3 (PDF 127 kb)


  1. Alberico I, Lirer L, Petrosino P, Scandone R (2002) A methodology for the evaluation of long-term volcanic risk from pyroclastic fows in Campi Flegrei (Italy). J Volcanol Geoth Res 116:63–78CrossRefGoogle Scholar
  2. Bayarri M, Berger JO, Calder ES, Dalbey K, Lunagomez S, Patra AK, Pitman EB, Spiller ET, Wolpert RL (2009) Using statistical and computer models to quantify volcanic hazards. Technometrics 51(4)Google Scholar
  3. Bertagnini A, Landi P, Rosi M, Vigliargio A (1998) The Pomici di Base plinian eruption of Somma-Vesuvius. J Volcanol Geoth Res 83:219–239CrossRefGoogle Scholar
  4. Bevilacqua A, Isaia R, Neri A, Vitale S, Aspinall WP, Bisson M, Flandoli F, Baxter PJ, Bertagnini A, Esposti Ongaro T, Iannuzzi E (2015) Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 1. Vent opening maps. J Geophysi Res: Solid Earth 120(4):2309–2329CrossRefGoogle Scholar
  5. Bonadonna C, Connor CB, Houghton BF, Connor L, Byrne M, Laing A, Hincks TK (2005) Probabilistic modeling of tephra dispersal: hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. J Geophys Res: SolidEarth (1978–2012), 110(B3).Google Scholar
  6. Brancaccio L, Cinque A, Romano P, Rosskopf C, Russo F, Santangelo N, Santo A (1991) Geomorphology and Neotectonic evolution of a sector of the Tyrrenian flank of the Southern Apennines (region of Naples). Z Geomorph N F 82:47–58Google Scholar
  7. Branney MJ, Kokelaar BP (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geological Society of London.Google Scholar
  8. Charbonnier SJ, Connor CB, Connor L, Dixon T, Gertisser R (2011) Application of field observations and remote sensing to numerical modeling and hazard assessment of volcanic flows: an example from Merapi Volcano, Indonesia. In Conference Proceedings—Remote Sensing, Natural Hazards and Environmental Change, Eds: J.-C. Thouret, S.C. Liew and A. Gupta, CERAMAC special issue 3, 35–38.Google Scholar
  9. Cioni R, Bertagnini A, Santacroce R, Andronico D (2008) Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): towards a new classification scheme. J Volcanol Geoth Res 178:331–346CrossRefGoogle Scholar
  10. Cioni R, Santacroce R, Sbrana A (1999) Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius Caldera. B Volcanol 60:207–222CrossRefGoogle Scholar
  11. Córdoba G (2007) Dilute particle-laden currents: dynamics and deposit patterns. Dissertation, University of Bristol.Google Scholar
  12. Costa A, Dell’Erba F, Di Vito MA, Isaia R, Macedonio G, Orsi G, Pfeiffer T (2009) Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy). B Volcanol 71(3):259–273CrossRefGoogle Scholar
  13. D’Auria L, Pepe S, Castaldo R, Giudicepietro F, Macedonio G, Ricciolino P, Tizzani P, Casu F, Lanari R, Manzo M, Martini M, Sansosti E, Zinno I (2015) Magma injection beneath the urban area of Naples: a new mechanism for the 2012–2013 volcanic unrest at Campi Flegrei caldera. Scientific reports 5Google Scholar
  14. Dalbey K, Patra AK, Pitman EB, Bursik MI, Sheridan MF (2008) Input uncertainty propagation methods and hazard mapping of geophysical mass flows. J Geophys Res Solid Earth 113(B5):1978–2012CrossRefGoogle Scholar
  15. de Vita S, Orsi G, Civetta L, Carandente A, D’Antonio M, Deino A, di Cesare T, Di Vito MA, Fisher RV, Isaia R, Marotta E, Necco A, Ort M, Pappalardo L, Piochi M, Southon J (1999) The Agnano-Monte Spina eruption (4100 years BP) in the restless Campi Flegrei caldera (Italy). J Volcanol Geoth Res 91:269–301CrossRefGoogle Scholar
  16. Deino AL, Orsi G, de Vita S, Piochi M (2004) The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera—Italy) assessed by 40Ar/39Ar dating method. J Volcanol Geoth Res 133:157–170CrossRefGoogle Scholar
  17. Dellino P, La Volpe L (2000) Structures and grain size distribution in surge deposits as a tool for modelling the dynamics of dilute pyroclastic density currents at La Fossa di Vulcano (Aeolian Islands, Italy). J Volcanol Geoth Res 96(1):57–78CrossRefGoogle Scholar
  18. Di Vito MA, Isaia R, Orsi G, Southon J, de Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J Volcanol Geoth Res 91(2):221–246CrossRefGoogle Scholar
  19. Doronzo DM (2012) Two new end members of pyroclastic density currents: forced convection-dominated and inertia-dominated. J Volcanol Geoth Res 219:87–91CrossRefGoogle Scholar
  20. Doronzo DM, de Tullio MD, Pascazio G, Dellino P, Liu G (2015) On the interaction between shear dusty currents and buildings in vertical collapse: theoretical aspects, experimental observations, and 3D numerical simulation. J Volcanol Geoth Res 302:190–198CrossRefGoogle Scholar
  21. Doyle EE, Hogg AJ, Mader HM, Sparks RSJ (2010) A two-layer model for the evolution and propagation of dense and dilute regions of pyroclastic currents. J Volcanol Geoth Res 190:365–378CrossRefGoogle Scholar
  22. Druitt TH (1998) Pyroclastic density currents. Geol Soc Lond, Spec Publ 145(1):145–182CrossRefGoogle Scholar
  23. Dvorak JJ, Berrino G (1991) Recent ground movement and seismic activity in Campi Flegrei, southern Italy: episodic growth of a resurgent dome. J Geophys Res Solid Earth 96(B2):2309–2323CrossRefGoogle Scholar
  24. Esposti Ongaro T, Neri A, Menconi G, de’Michieli Vitturi M, Marianelli P, Cavazzoni C, Erbacci G, Baxter PJ (2008) Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius. J Volcanol Geoth Res 178:378–396CrossRefGoogle Scholar
  25. Favalli M, Chirico GD, Papale P, Pareschi MT, Boschi E (2009) Lava flow hazard at Nyiragongo volcano, D.R.C. B Volcanol 71:363–374CrossRefGoogle Scholar
  26. Fedele FG, Giaccio B, Isaia R, Orsi G (2003) The Campanian Ignimbrite eruption, Heinrich event 4, and Palaeolithic change in Europe: a high-resolution investigation. In: Robock, A., Oppenheimer, C. (eds) Volcanism and the Earth’s atmosphere, AGU Geophysical Monograph Series, pp 301–325.Google Scholar
  27. Gurioli L, Sulpizio R, Cioni R, Sbrana A, Santacroce R, Luperini W, Andronico D (2010) Pyroclastic flow hazard assessment at Somma–Vesuvius based on the geological record. B Volcanol 72:1021–1038CrossRefGoogle Scholar
  28. Hazlett RW, Buesch D, Anderson JL, Elan R, Scandone R (1991) Geology, failure conditions, and implications of seismogenic avalanches of the 1944 eruption at Vesuvius, Italy. J Volcanol Geoth Res 47:249–264CrossRefGoogle Scholar
  29. Heim A (1882) Der Bergsturz von Elm. Z. Dtsch Geol Ges 34:74–115Google Scholar
  30. Jaccard P (1926) Le coefficient generique et le coefficient de communaute dans la flore marocaine. Impr. Commerciale.Google Scholar
  31. Kalbfleisch J (1979) Probability and statistical inference, vol Vol. 2. Springer-Verlag, New YorkGoogle Scholar
  32. Komorowski JC, Jenkins S, Baxter PJ, Picquout A, Lavigne F, Charbonnier S, Gertisser R, Preece K, Cholik N, Budi-Santoso A, Surono (2013) Paroxysmal dome explosion during the Merapi 2010 eruption: processes and facies relationships of associated high-energy pyroclastic density currents. J Volcanol Geoth Res 261:260–294CrossRefGoogle Scholar
  33. Malin MC, Sheridan MF (1982) Computer-assisted mapping of pyroclastic surges. Science 217:637–640CrossRefGoogle Scholar
  34. Marzocchi W, Sandri L, Selva J (2010) BET_VH: a probabilistic tool for long-term volcanic hazard assessment. B Volcanol 72:705–716CrossRefGoogle Scholar
  35. Marzocchi W, Taroni M, Selva J (2015) Accounting for epistemic uncertainty in PSHA: logic tree and ensemble modeling. B Seismol Soc Am 105(4):2151–2159CrossRefGoogle Scholar
  36. Neri A, Bevilacqua A, Esposti Ongaro T, Isaia R, Aspinall WP, Bisson M, Flandoli F, Baxter PJ, Bertagnini A, Ianuzzi E, Orsucci S, Pistolesi M, Rosi M, Vitale S (2015) Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: 2. Pyroclastic density current invasion maps. J Geophys Res Solid Earth 120(4):2330–2349CrossRefGoogle Scholar
  37. Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. B Volcanol 66:514–530CrossRefGoogle Scholar
  38. Orsi G, Di Vito MA, Selva J, Marzocchi W (2009) Long-term forecast of eruption style and size at Campi Flegrei caldera (Italy). Earth Planet Sc Lett 287:265–276CrossRefGoogle Scholar
  39. Procter JN, Cronin SJ, Platz T, Patra A, Dalbey K, Sheridan M, Neall V (2010) Mapping block-and-ash flow hazards based on Titan 2D simulations: a case study from Mt. Taranaki, NZ. Nat Hazards 53:483–501CrossRefGoogle Scholar
  40. Rosi M, Principe C, Vecci R (1993) The 1631 Vesuvius eruption. A reconstruction based on historical and stratigraphical data. J Volcanol Geoth Res 58:151–182CrossRefGoogle Scholar
  41. Salt JD (2008) The seven habits of highly defective simulation projects. Journal of Simulation 2(3):155–161CrossRefGoogle Scholar
  42. Sandri L, Costa A, Selva J, Tonini R, Macedonio G, Folch A, Sulpizio R (2016) Beyond eruptive scenarios: assessing tephra fallout hazard from Neapolitan volcanoes. Scientific reports 6Google Scholar
  43. Sandri L, Thouret J-C, Constantinescu R, Biass S, Tonini R (2014) Long-term multi-hazard assessment for El Misti volcano (Peru). B Volcanol 76:771–797CrossRefGoogle Scholar
  44. Selva J, Costa A, Sandri L, Macedonio G, Marzocchi W (2014) Probabilistic short-term volcanic hazard in phases of unrest: a case study for tephra fallout. J Geophys Res Solid Earth 119(12):8805–8826CrossRefGoogle Scholar
  45. Selva J, Orsi G, Di Vito MA, Marzocchi W, Sandri L (2012) Probability hazard map for future vent opening at the Campi Flegrei caldera, Italy. B Volcanol 74:497–510CrossRefGoogle Scholar
  46. Sheridan MF (1980) Pyroclastic block flow from the September, 1976, eruption of La Soufrière volcano, Guadeloupe. B Volcanol 43-2:397–402CrossRefGoogle Scholar
  47. Sheridan MF, Macías JL (1995) Estimation of risk probability for gravity-driven pyroclastic flows at Volcan Colima, Mexico. J Volcanol Geoth Res 66:251–266CrossRefGoogle Scholar
  48. Sheridan MF, Malin MC (1983) Application of computer-assisted mapping to volcanic hazard evaluation of surge eruptions: Vulcano, Lipari, and Vesuvius. J Volcanol Geoth Res 17:187–202CrossRefGoogle Scholar
  49. Smith VC, Isaia R, Pearce NJG (2011) Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: implications for eruption history and chronostratigraphic markers. Quaternary Sci Rev 30(25):3638–3660CrossRefGoogle Scholar
  50. Stefanescu ER, Bursik M, Córdoba G, Dalbey K, Jones MD, Patra AK, Pieri DC, Pitman EB, Sheridan MF (2012) Digital elevation model uncertainty and hazard analysis using a geophysical flow model. P Roy Soc A-Math Phy 468(2142):1543–1563CrossRefGoogle Scholar
  51. Sulpizio R, Bonasia R, Dellino P, Mele D, Di Vito MA, La Volpe L (2010a) The Pomici di Avellino eruption of Somma–Vesuvius (3.9 ka BP). Part II: sedimentology and physical volcanology of pyroclastic density current deposits. B Volcanol 72(5):559–577CrossRefGoogle Scholar
  52. Sulpizio R, Capra L, Sarocchi D, Saucedo R, Gavilanes-Ruiz JC, Varley NR (2010b) Predicting the block-and-ash flow inundation areas at Volcán de Colima (Colima, Mexico) based on the present day (February 2010) status. J Volcanol Geoth Res 193:49–66CrossRefGoogle Scholar
  53. Sulpizio R, Dellino P, Doronzo DM, Sarocchi D (2014) Pyroclastic density currents: state of the art and perspectives. J Volcanol Geoth Res 283:36–65CrossRefGoogle Scholar
  54. Sulpizio R, Mele D, Dellino P, La Volpe L (2005) A complex, Subplinian-type eruption from low-viscosity, phonolitic to tephri-phonolitic magma: the AD 472 (Pollena) eruption of Somma-Vesuvius, Italy. B Volcanol 67:743–767CrossRefGoogle Scholar
  55. Tarquini S, Favalli M (2011) Mapping and DOWNFLOW simulation of recent lava flow fields at Mount Etna. J Volcanol Geoth Res 204:27–39CrossRefGoogle Scholar
  56. Tierz P, Sandri L, Costa A, Sulpizio R, Zaccarelli L, Di Vito MA, Marzocchi W (2017) Uncertainty assessment of pyroclastic density currents at Mt Vesuvius (Italy) simulated through the Energy Cone Model. In: Webley, P., Riley, K., Thompson, M.P. (eds) Natural hazard uncertainty assessment: modeling and decision support, AGU Geophysical Monograph Series (in press)Google Scholar
  57. Wohletz K, Heiken G (1992) Volcanology and geothermal energy. University of California Press, BerkeleyGoogle Scholar
  58. Wright JV, Smith AL, Roobol MJ, Mattioli GS, Fryxell JE (2015) Distal ash hurricane (pyroclastic density current) deposits from a ca. 2000 yr BP Plinian-style eruption of Mount Pelée, Martinique: distribution, grain-size characteristics, and implications for future hazard. Geol Soc Am Bull:B31282–B31281Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Pablo Tierz
    • 1
  • Laura Sandri
    • 1
  • Antonio Costa
    • 1
  • Lucia Zaccarelli
    • 1
  • Mauro Antonio Di Vito
    • 2
  • Roberto Sulpizio
    • 3
    • 4
  • Warner Marzocchi
    • 5
  1. 1.Istituto Nazionale di Geofisica e Vulcanologia, INGV, Sezione di BolognaBolognaItaly
  2. 2.Istituto Nazionale di Geofisica e Vulcanologia, INGV, Osservatorio VesuvianoNaplesItaly
  3. 3.Dipartimento di Scienze della Terra e GeoambientaliUniversità di BariBariItaly
  4. 4.Istituto per la Dinamica dei Processi Ambientali, Consiglio Nazionale delle Ricerche, IDPA-CNRMilanItaly
  5. 5.Istituto Nazionale di Geofisica e Vulcanologia, INGV, Sezione di Roma1RomeItaly

Personalised recommendations