Skip to main content

A new interpolation method to model thickness, isopachs, extent, and volume of tephra fall deposits

Abstract

Tephra thickness distribution is the primary piece of information used to reconstruct the histories of past explosive volcanic eruptions. We present a method for modeling tephra thickness with less subjectivity than is the case with hand-drawn isopachs, the current, most frequently used method. The algorithm separates the thickness of a tephra fall deposit into a trend and local variations and models them separately using segmented linear regression and ordinary kriging. The distance to the source vent and downwind distance are used to characterize the trend model. The algorithm is applied to thickness datasets for the Fogo Member A and North Mono Bed 1 tephras. Simulations on subsets of data and cross-validation are implemented to test the effectiveness of the algorithm in the construction of the trend model and the model of local variations. The results indicate that model isopach maps and volume estimations are consistent with previous studies and point to some inconsistencies in hand-drawn maps and their interpretation. The most striking feature noticed in hand-drawn mapping is a lack of adherence to the data in drawing isopachs locally. Since the model assumes a stable wind field, divergences from the predicted decrease in thickness with distance are readily noticed. Hence, wind direction, although weak in the case of Fogo A, was not unidirectional during deposition. A combination of the isopach algorithm with a new, data transformation can be used to estimate the extent of fall deposits. A limitation of the algorithm is that one must estimate “by hand” the wind direction based on the thickness data.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40(5):415–418

    Article  Google Scholar 

  2. Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75(8):1–19

    Article  Google Scholar 

  3. Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456

    Article  Google Scholar 

  4. Bonadonna C, Biass S, Costa A (2015) Physical characterization of explosive volcanic eruptions based on tephra deposits: propagation of uncertainties and sensitivity analysis. J Volcanol Geotherm Res 296:80–100

    Article  Google Scholar 

  5. Bonadonna C, Connor CB, Houghton BF, Connor L, Byrne M, Laing A, Hincks TK (2005) Probabilistic modeling of tephra dispersal: hazard assessment of a multiphase rhyolitic eruption at Tarawera. New Zealand. J Geophys Res-Solid Earth 110:(B3)

  6. Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81(3):173–187

    Article  Google Scholar 

  7. Burden RE, Chen L, Phillips JC (2013) A statistical method for determining the volume of volcanic fall deposits. Bull Volcanol 75(6):1–10

    Article  Google Scholar 

  8. Bursik M (2001) Effect of wind on the rise height of volcanic plumes. Geophys Res Lett 28(18):3621–3624

    Article  Google Scholar 

  9. Bursik M, Melekestsev IV, Braitseva OA (1993) Most recent fall deposits of Ksudach volcano, Kamchatka, Russia. Geophys Res Lett 20(17):1815–1818

    Article  Google Scholar 

  10. Bursik M, Sieh K, Meltzner A (2014) Deposits of the most recent eruption in the Southern Mono Craters, California: description, interpretation and implications for regional marker tephras. J Volcanol Geotherm Res 275:114–131

    Article  Google Scholar 

  11. Bursik MI, Carey SN, Sparks RSJ (1992a) A gravity current model for the May 18, 1980 Mount St. Helens plume Geophys Res Let 19(16):1663–1666

    Article  Google Scholar 

  12. Bursik MI, Sparks RSJ, Gilbert JS, Carey SN (1992b) Sedimentation of tephra by volcanic plumes: I. Theory and its comparison with a study of the Fogo A Plinian deposit, Sao Miguel (Azores). Bull Volcanol 54(4):329–344

    Article  Google Scholar 

  13. Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48(2–3):109–125

    Article  Google Scholar 

  14. Carey SN, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St. Helens volcano J Geophys Res-Solid Earth 87(B8):7061–7072

    Article  Google Scholar 

  15. Cioni R, Longo A, Macedonio G, Santacroce R, Sbrana A, Sulpizio R, Andronico D (2003) Assessing pyroclastic fall hazard through field data and numerical simulations: example from Vesuvius. J Geophys Res-Solid Earth 108(B2)

  16. Cressie N (1985) Fitting variogram models by weighted least squares. Math. Geol 17(5):563–586

    Google Scholar 

  17. Cressie N (1990) The origins of kriging. Math Geol 22(3):239–252

    Article  Google Scholar 

  18. Cressie N (2006) Block kriging for lognormal spatial processes. Math Geol 38(4):413–443

    Article  Google Scholar 

  19. Delhomme JP (1978) Kriging in the hydrosciences. Adv Water Resour 1(5):251–266

    Article  Google Scholar 

  20. Engwell SL, Aspinall WP, Sparks RSJ (2015) An objective method for the production of isopach maps and implications for the estimation of tephra deposit volumes and their uncertainties. Bull Volcanol 77(7):1–18

    Article  Google Scholar 

  21. Engwell SL, Sparks RSJ, Aspinall WP (2013) Quantifying uncertainties in the measurement of tephra fall thickness. J Appl Volcanol 2(1):1–12

    Article  Google Scholar 

  22. Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54(2):156–167

    Article  Google Scholar 

  23. Fierstein J, Houghton BF, Wilson CJN, Hildreth W (1997) Complexities of Plinian fall deposition at vent: an example from the 1912 Novarupta eruption (Alaska). J Volcanol Geotherm Res 76(3):215–227

    Article  Google Scholar 

  24. Folch A, Costa A, Macedonio G (2009) FALL3D: a computational model for transport and deposition of volcanic ash. Comput Geosci 35(6):1334–1342

    Article  Google Scholar 

  25. Genton MG (1998) Variogram fitting by generalized least squares using an explicit formula for the covariance structure. Math Geol 30(4):323–345

    Article  Google Scholar 

  26. Gonzalez-Mellado AO, Cruz-Reyna S (2010) A simple semi-empirical approach to model thickness of ash-deposits for different eruption scenarios. Nat Hazards Earth Syst Sci 10(11):2241–2257

    Article  Google Scholar 

  27. Hengl T, Heuvelink GB, Stein A (2004) A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma 120(1):75–93

    Article  Google Scholar 

  28. Houghton BF, Wilson CJN, Fierstein J, Hildreth W (2004) Complex proximal deposition during the Plinian eruptions of 1912 at Novarupta, Alaska. Bull Volcanol 66(2):95–133

    Article  Google Scholar 

  29. Hurst AW, Turner R (1999) Performance of the program ASHFALL for forecasting ashfall during the 1995 and 1996 eruptions of Ruapehu volcano. New Zealand J Geol Geophys 42(4):615–622

    Article  Google Scholar 

  30. Journel AG (1983) Nonparametric estimation of spatial distributions. Math. Geol 15(3):445–468

    Google Scholar 

  31. Kawabata E, Bebbington MS, Cronin SJ, Wang T (2013) Modeling thickness variability in tephra deposition. Bull Volcanol 75(8):1–14

    Article  Google Scholar 

  32. Kawabata E, Cronin SJ, Bebbington MS, Moufti MRH, El-Masry N, Wang T (2015) Identifying multiple eruption phases from a compound tephra blanket: an example of the AD1256 Al-Madinah eruption, Saudi Arabia. Bull Volcanol 77(1):1–13

    Article  Google Scholar 

  33. Klawonn M, Houghton BF, Swanson DA, Fagents SA, Wessel P, Wolfe CJ (2014) Constraining explosive volcanism: subjective choices during estimates of eruption magnitude. Bull Volcanol 76(2):1–6

    Article  Google Scholar 

  34. Koyaguchi T (1994) Grain-size variation of tephra derived from volcanic umbrella clouds. Bull Volcanol 56(1):1–9

    Article  Google Scholar 

  35. Moore RB (1990) Volcanic geology and eruption frequency, São Miguel, Azores. Bull Volcanol 52(8):602–614

    Article  Google Scholar 

  36. Muggeo VM (2003) Estimating regression models with unknown break-points. Stat Med 22(19):3055–3071

    Article  Google Scholar 

  37. Muggeo VM (2008) Segmented: an R package to fit regression models with broken-line relationships. R news 8(1):20–25

    Google Scholar 

  38. Oliver MA, Webster R (1990) Kriging: a method of interpolation for geographical information systems. Int J Geogr Inf Syst 4(3):313–332

    Article  Google Scholar 

  39. Pardo N, Cronin SJ, Wright HM, Schipper CI, Smith I, Stewart B (2014) Pyroclast textural variation as an indicator of eruption column steadiness in andesitic Plinian eruptions at Mt. Ruapehu Bull Volcanol 76(5):1–19

    Google Scholar 

  40. Paul R, Cressie N (2011) Lognormal block kriging for contaminated soil. Eur J Soil Sci 62(3):337–345

    Article  Google Scholar 

  41. Payne RJ, Symeonakis E (2012) The spatial extent of tephra deposition and environmental impacts from the 1912 Novarupta eruption. Bull Volcanol 74(10):2449–2458

    Article  Google Scholar 

  42. Pebesma EJ (2004) Multivariable geostatistics in S: the gstat package. Comput Geosci 30(7):683–691

    Article  Google Scholar 

  43. Pyle DM (1989) The thickness, volume and grain size of tephra fall deposits. Bull Volcanol 51(1):1–15

    Article  Google Scholar 

  44. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/

  45. Rhoades DA, Dowrick DJ, Wilson CJN (2002) Volcanic hazard in New Zealand: scaling and attenuation relations for tephra fall deposits from Taupo volcano. Nat Hazards 26(2):147–174

    Article  Google Scholar 

  46. Sieh K, Bursik M (1986) Most recent eruption of the mono craters, eastern central California. J Geophys Res-Solid Earth 91(B12):12539–12571

    Article  Google Scholar 

  47. Solow AR (1986) Mapping by simple indicator kriging. Math Geol 18(3):335–352

    Article  Google Scholar 

  48. Walker GPL (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rundsch 62(2):431–446

    Article  Google Scholar 

  49. Walker GPL (1980) The Taupo pumice: product of the most powerful known (ultraplinian) eruption? J Volcanol Geotherm Res 8(1):69–94

    Article  Google Scholar 

  50. Walker GPL, Croasdale R (1971) Characteristics of some basaltic pyroclastics. Bull Volcanol 35(2):303–317

    Article  Google Scholar 

  51. Yang Q, Bursik MI (2016) “TTD” https://vhub.org/resources/3957

Download references

Acknowledgments

This research was supported in part by NSF-IDR CMMI grant number 1131074 to E. B. Pitman, AFOSR grant number FA9550-11-1-0336 to A. K. Patra, an NSF-HSEES type 1 grant to B. Houghton, and NSF-HSEES grant number 1521855 to G. A. Valentine. All results and opinions expressed in the foregoing are those of the authors and do not reflect opinions of NSF or AFOSR. We are grateful for the data and insightful comments from Samantha Engwell. We thank AE Costanza Bonadonna and the anonymous reviewers for their suggestions that greatly improved the presentation of the science. Thank you, Solène.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qingyuan Yang.

Additional information

Editorial responsibility: C. Bonadonna

Electronic supplementary material

ESM 1

(DOCX 887 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Bursik, M. A new interpolation method to model thickness, isopachs, extent, and volume of tephra fall deposits. Bull Volcanol 78, 68 (2016). https://doi.org/10.1007/s00445-016-1061-0

Download citation

Keywords

  • Tephra thickness
  • Isopach maps
  • Volume estimation
  • Kriging
  • Interpolation