Bulletin of Volcanology

, 78:62 | Cite as

Eruptive parameters and dynamics of the April 2015 sub-Plinian eruptions of Calbuco volcano (southern Chile)

  • Angelo CastruccioEmail author
  • Jorge Clavero
  • Andrea Segura
  • Pablo Samaniego
  • Olivier Roche
  • Jean-Luc Le Pennec
  • Bárbara Droguett
Research Article


We conducted geological and petrological analyses of the tephra fallout and pyroclastic density current (PDC) products of the 22-23 April 2015 Calbuco eruptions. The eruptive cycle consisted of two sub-Plinian phases that generated > 15 km height columns and PDCs that travelled up to 6 km from the vent. The erupted volume is estimated at 0.38 km3 (non-DRE), with approximately 90% corresponding to tephra fall deposits and the other 10% to PDC deposits. The erupted products are basaltic-andesite, 54-55 wt.% SiO2, with minor amounts of andesite (58 wt.% SiO2). Despite the uniform composition of the products, there are at least four types of textures in juvenile clasts, with different degrees of vesicularity and types and content of crystals. We propose that the eruption triggering mechanism was either exsolution of volatiles due to crystallization, or a small intrusion into the base of the magma chamber, without significant magma mixing or with a magma compositionally similar to that of the residing magma. In either case the triggering mechanism generated convection and sufficient overpressure to promote the first eruptive phase. The start of the eruption decompressed the chamber, promoting intense vesiculation of the remaining magma and an increase in eruption rate towards the end of the eruption.


Calbuco volcano Southern Andes Sub-Plinian eruption Triggering mechanisms 



The authors thank the help and eruption accounting of A. Ziller and the field support from A. Koller, A. Salas and M. Contreras. AC and AS acknowledge the support from FONDECYT project 11121298 and FONDAP project 15090013. JC acknowledges the support of U. Mayor and G. Diaz. The field mission of JLLP, OR and PS was financed by the Institut de Recherche pour le Développement (France). We thank Lester Acuña for kindly providing the photo of Fig. 2b. We acknowledge the collaboration of J. Romero, R. Daga and A. Caselli for collection of distal data of the fall deposits. This is Laboratory of Excellence ClerVolc contribution number XX. We thank the thoughtful reviews of James Gardner, James White and an anonymous reviewer that greatly improved this work.

Supplementary material

445_2016_1058_MOESM1_ESM.pdf (157 kb)
ESM 1 (PDF 157 kb)


  1. Baker DR, Alletti M (2012) Fluid saturation and volatile partitioning between melts and hydrous fluids in crustal magmatic systems: the contribution of experimental measurements and solubility models. Earth Sci Rev 114:298–324CrossRefGoogle Scholar
  2. Bertin D, Amigo A, Mella M, Astudillo V, Bertin L, Bucchi F (2015) Erupción del volcán Calbuco 2015: Estratigrafía eruptiva y volumen involucrado. XIV Congreso Geológico Chileno, La Serena, AbstractsGoogle Scholar
  3. Blake S (1984) Volatile oversaturation during the evolution of silicic magma chambers as an eruption trigger. J Geophys Res 89:8237–8244CrossRefGoogle Scholar
  4. Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: A new simple strategy. Geology 40:415–418. doi: 10.1130/G32769.1 CrossRefGoogle Scholar
  5. Bonadonna C, Houghton BF (2005) Total grainsize distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456CrossRefGoogle Scholar
  6. Carey SN, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125CrossRefGoogle Scholar
  7. Castruccio A, Clavero J (2015) Lahar simulation at active volcanoes of the Southern Andes: implications for hazard assessment. Nat Hazards 77:693–716. doi: 10.1007/s11069-015-1617-x CrossRefGoogle Scholar
  8. Castruccio A, Clavero J, Rivera A (2010) Comparative study of lahars generated by the 1961 and 1971 eruptions of Calbuco and Villarrica volcanoes, Southern Andes of Chile. J Volcanol Geotherm Res. doi: 10.1016/j.volgeores.2009.12.005 Google Scholar
  9. Clavero J, Godoy E, Arancibia G, Rojas C, Moreno H (2008) Multiple Holocene sector collapses at Calbuco volcano, Southern Andes. Proceedings of the IVACEI General Assembly 2008-IcelandGoogle Scholar
  10. Clavero J, Castruccio A, Droguett B, Segura A, Le Pennec JL, Roche O, Samaniego P (2015) Small volumepyroclastic density currents of the 22–23 April 2015 eruption on the NE flank of Calbuco volcano, Southern Andes. XIV Congreso Geológico Chileno, La Serena. Abstracts.Google Scholar
  11. Couch S, Sparks RSJ, Carroll MR (2001) Mineral disequilibrum in lavas explained by convective self-mixing in poen magma chambers. Nature 411:1037–1039CrossRefGoogle Scholar
  12. Crabtree S, Lange R (2011) Complex PhenocrystTextures and Zoning Patterns in Andesites and Dacites: Evidence of Degassing-Induced Rapid Crystallization? J Petrol 52(1):3–38CrossRefGoogle Scholar
  13. Eichelberger JC (1995) Silicic volcanism: ascent of viscous magmas from crustal reservoirs. Annu Rev Earth Planet Sci 23:41–63CrossRefGoogle Scholar
  14. Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167CrossRefGoogle Scholar
  15. Folch A, Martí J (1998) The generation of overpressure in felsic magma chambers by replenishment. Earth Planet Sci Lett 163:301–314CrossRefGoogle Scholar
  16. Gardner CA, Cashman KV, Neal CA (1998) Tephra-fall deposits from the 1992 eruption of Crater Peak, Alaska: implications of clast textures for eruptive processes. Bull Volcanol 59:537–555CrossRefGoogle Scholar
  17. Inman D (1952) Measures for describing the size distributions of sediments. J Sediment Petrol 22:125–145Google Scholar
  18. Jessop DE, Kelfoun K, Labazuy P, Mangeney A, Roche O, Tillier JL, Trouillet M, Thibault G (2012) LiDAR derived morphology of the 1993 Lascar pyroclastic flow deposits, and implication for flow dynamics and rheology. J Volcanol Geotherm Res 245–246:81–97CrossRefGoogle Scholar
  19. Klug C, Cashman K (1984) Vesiculation of May 18, 1980, Mount St. Helens magma. Geology 22:468–472CrossRefGoogle Scholar
  20. López L, Parada MA, Moreno H, Frey F, Hickey-Vargas R (1992) A contribution to the petrogenesis of Osorno and Calbuco volcanoes, Southern Andes (41°00’-41°30’S): comparative study. Rev Geol Chile 19:211–226Google Scholar
  21. McNutt S, Thompson G, Johnson J, De Angelis S, Fee D (2015) Seismic and infrasonic monitoring. In: (ed-in-chief) Sigurdsson H. Encyclopedia of Volcanoes (2 ed). Academic pressGoogle Scholar
  22. Mella M, Moreno H, Vergés A, Quiroz D, Bertin L, Basualto D, Bertin D, Garrido N (2015) Productos volcánicos, impactos y respuesta a la emergencia del ciclo eruptivo abril-mayo (2015) del volcán Calbuco. XIV Congreso Geológico Chileno, La Serena. AbstractsGoogle Scholar
  23. Newhall C, Self S (1982) The volcanic explosivity Index (VEI); An estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238CrossRefGoogle Scholar
  24. Passarelli L, Brodsky E (2012) The correlation between run-up and repose times of volcanic eruptions. Geophys J Int 188:1025–1045. doi: 10.1111/j.1365-246X.2011.05298.x CrossRefGoogle Scholar
  25. Petit-Breuilh M (1999) Cronología eruptiva histórica de los volcanes Osorno y Calbuco, Andes del Sur (41°-41°30’S). Boletín No. 53, Servicio Nacional de Geología y Minería, Chile, 46 p.Google Scholar
  26. Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51(1):1–15CrossRefGoogle Scholar
  27. Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton B, Rymer H, Stix J, McNutt S (eds) Encyclopedia of volcanoes. Academic, San Diego, pp. 263–270Google Scholar
  28. Ridolfi F, Renzulli A (2012) Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130°C and 2.2 GPa. Contrib Mineral Petrol 163:877–895. doi: 10.1007/s00410-011-0704-6 CrossRefGoogle Scholar
  29. Romero JE, Morgavi D, Arzilli F, Daga R, Caselli A, Reckziegel F, Viramonte J, Díaz-Alvarado J, Polacci M, Burton M, Perugini D (2016) Eruption dynamics of the 22–23 April 2015 calbuco volcano (Southern Chile): Analyses of tephra fall deposits. J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2016.02.027 Google Scholar
  30. Scandone R, Giacomelli L (2001) The slow boiling of magma chambers and the dynamics of explosive eruptions. J Volcanol Geotherm Res 110:121–136CrossRefGoogle Scholar
  31. Scandone R, Cashman KV, Malone SD (2007) Magma supply, magma ascent and the style of volcanic eruptions. Earth Planet Sci Lett 253:513–529. doi: 10.1016/j.epsl.2006.11.016 CrossRefGoogle Scholar
  32. Segura A, Castruccio A, Clavero J, Le-Pennec JL, Roche O, Samaniego P, Droguett B, Romero J (2015) Fallout deposits of the 22-23 April 2015 eruption of Calbuco volcano, Southern Andes. XIV Congreso Geológico Chileno, La Serena AbstractsGoogle Scholar
  33. Sellés D, Moreno H (2011) Geología del volcán Calbuco. Carta Geológica de Chile, Serie Geología Básica No. 130, escala 1:50.000.Google Scholar
  34. SERNAGEOMIN (2014a) Reporte Especial de Actividad Volcánica (REAV) Región de los Lagos. Año 2014 Mayo 20:45 HLGoogle Scholar
  35. SERNAGEOMIN (2014b) Reporte de Actividad Volcánica (RAV) Región de los Lagos. Año 2014 Diciembre. Volumen 2Google Scholar
  36. SERNAGEOMIN (2015a) Reporte de Actividad Volcánica (RAV) Región de los Lagos. Año 2015 Enero. Volumen 1Google Scholar
  37. SERNAGEOMIN (2015b) Reporte de Actividad Volcánica (RAV) Región de los Lagos. Año 2015 Febrero. Volumen 2Google Scholar
  38. SERNAGEOMIN (2015c) Reporte de Actividad Volcánica (RAV) Región de los Lagos. Año 2015 Marzo. Volumen 3Google Scholar
  39. SERNAGEOMIN (2015d) Reporte Especial de Actividad Volcánica (REAV) Región de los Lagos. Año 2015 Abril 22Google Scholar
  40. SERNAGEOMIN (2015e) Reporte Especial de Actividad Volcánica (REAV) Región de los Lagos. Año 2015 Abril 22 (18:00 HL)Google Scholar
  41. SERNAGEOMIN (2015f) Reporte Especial de Actividad Volcánica (REAV) Región de los Lagos. Año 2015 Abril 22 (20:45 HL)Google Scholar
  42. SERNAGEOMIN (2015g) Reporte Especial de Actividad Volcánica (REAV) Región de los Lagos. Año 2015 Abril 22 (22:30 HL)Google Scholar
  43. SERNAGEOMIN (2015h) Reporte Especial de Actividad Volcánica (REAV) Región de los Lagos. Año 2015 Abril 23 (01:10 HL)Google Scholar
  44. SERNAGEOMIN (2015i) Reporte Especial de Actividad Volcánica (REAV) Región de los Lagos. Año 2015 Abril 23 (10:30 HL)Google Scholar
  45. SERNAGEOMIN (2015j) Reporte Especial de Actividad Volcánica (REAV) Región de los Lagos. Año 2015. 29 Abril – 1 MayoGoogle Scholar
  46. Slezin YB (2003) The mechanism of volcanic eruptions (a steady state approach), J. Volcanol Geotherm Res 122:7–50CrossRefGoogle Scholar
  47. Stern C, Moreno H, Lopez-Escobar L, Clavero J, Lara L, Naranjo J, Parada M, Skewes M (2007) Chilean Volcanoes. In: Moreno T, Gibbons W (eds) The Geology of Chile. Geological Society of London, London, pp. 149–180Google Scholar
  48. Carey S, Sigurdsson H (1987) Temporal variations in column height and magma discharge rate during the 79 A.D. eruption of Vesuvius. Geol Soc Am Bull 99 (2):303Google Scholar
  49. Stix J, Torres R, Narváez L, Cortés G, Raigosa J, Gómez D, Castonguay R (1997) A model of vulcanian eruptions at Galeras volcano, Colombia. J Volcanol Geotherm Res 77:285–303CrossRefGoogle Scholar
  50. Tait S, Jaupart C, Vergniolle S (1989) Pressure, gas content and eruption periodicity of a shallow, crystallising magma chamber. Earth Planet Sci Lett 92:107–123CrossRefGoogle Scholar
  51. Valderrama O, Franco L, Gil-Cruz F (2015) Erupción intempestiva del volcán Calbuco, abril 2015. XIV Congreso Geológico Chileno, La Serena. AbstractsGoogle Scholar
  52. Van Eaton A, Amigo A, Bertin D, Mastin L, Giacosa R, González J, Valderrama O, Fontijn K, Behnke S (2016) Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile. Geophys Res Lett 43. doi: 10.1002/2016GL068076
  53. Walker W (1971) Grain-size Characteristics of pyroclastic deposits. J Geol 79:696–714CrossRefGoogle Scholar
  54. Waters L, Lange R (2015) An updated calibration of the plagioclase-liquid hygrometer-thermometer applicable to basalts through rhyolites. Am Mineral 100:2172–2184CrossRefGoogle Scholar
  55. White R, McCausland W (2016) Volcano-tectonic earthquakes: A new tool for estimating intrusive volumes and forecasting eruptions. J Volcanol Geotherm Res 309:139–155CrossRefGoogle Scholar
  56. Wilson L, Walker GPL (1987) Explosive volcanic-eruptions.6. Ejecta dispersal in plinian eruptions—the control of eruption conditions and atmospheric properties. Geophys J R Astron Soc 89(2):657–679CrossRefGoogle Scholar
  57. Woods AW, Koyaguchi T (1994) Transitions between explosive and effusive eruption of silicic magmas. Nature 370:641–645CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Angelo Castruccio
    • 1
    • 2
    Email author
  • Jorge Clavero
    • 3
    • 4
  • Andrea Segura
    • 1
    • 2
  • Pablo Samaniego
    • 5
  • Olivier Roche
    • 5
  • Jean-Luc Le Pennec
    • 5
  • Bárbara Droguett
    • 3
    • 4
  1. 1.Departamento de GeologíaUniversidad de ChileSantiagoChile
  2. 2.CEGA (Centro de Excelencia en Geotermia de los Andes)SantiagoChile
  3. 3.Amawta Geoconsultores Ltda.SantiagoChile
  4. 4.Escuela de GeologíaUniversidad MayorSantiagoChile
  5. 5.Laboratoire Magmas et VolcansUniversité Blaise Pascal-CNRS-IRDAubièreFrance

Personalised recommendations