Advertisement

Tephra dispersal during the Campanian Ignimbrite (Italy) eruption: implications for ultra-distal ash transport during the large caldera-forming eruption

  • Victoria C. SmithEmail author
  • Roberto Isaia
  • Sam L. Engwell
  • Paul. G. Albert
Research Article

Abstract

The Campanian Ignimbrite eruption dispersed ash over much of the central eastern Mediterranean Sea and eastern Europe. The eruption started with a Plinian phase that was followed by a series of pyroclastic density currents (PDCs) associated with the collapse of the Plinian column and the caldera. The glass compositions of the deposits span a wide geochemical range, but the Plinian fallout and PDCs associated with column collapse, the Lower Pumice Flow, only erupted the most evolved compositions. The later PDCs, the Breccia Museo and Upper Pumice Flow, erupted during and after caldera collapse, tap a less evolved component, and intermediate compositions that represent mixing between the end-members. The range of glass compositions in the Campanian Ignimbrite deposits from sites across the central and eastern Mediterranean Sea allow us to trace the dispersal of the different phases of this caldera-forming eruption. We map the fallout from the Plinian column and the plumes of fine material associated with the PDCs (co-PDCs) across the entire dispersal area. This cannot be done using the usual grain-size methods as deposits in these distal regions do not retain characteristics that allow attribution to either the Plinian or co-PDC phases. The glass compositions of the tephra at ultra-distal sites (>1500 km from the vent) match those of the uppermost PDC units, suggesting that most of the ultra-distal dispersal was associated with the late co-PDC plume that was generated during caldera collapse.

Keywords

Campanian Ignimbrite Caldera-forming eruption Ash dispersal co-PDC Plinian Tephra 

Notes

Acknowledgments

Enrico Iannuzzi, Madeleine Humphreys, Richard Brooker, Jenny Riker, Darren Mark, Tony Hinchliffe and Mike Stock helped with some of the proximal field sampling. PGA is funded by a Leverhulme Early Career Fellowship. We thank Antonio Costa for comments on a draft of the manuscript, Michael Ort and an anonymous reviewer for detailed reviews and Costanza Bonadonna for constructive comments and editorial handling.

Supplementary material

445_2016_1037_MOESM1_ESM.pdf (105 kb)
SM 1 Glass analyses of the proximal Campanian Ignimbrite samples analysed in this study (see Table 1 for sample details). (PDF 104 kb)
445_2016_1037_MOESM2_ESM.pdf (119 kb)
SM 2 Glass analyses of distal Campanian Ignimbrite tephras analysed in this study (see Table 2 for sample details). (PDF 119 kb)
445_2016_1037_MOESM3_ESM.pdf (83 kb)
SM 3 Analyses of the MPI-DING reference glasses (Jochum et al. 2006) that were used as secondary standards for analytical runs on the electron microprobe. (PDF 82 kb)

References

  1. Arienzo I, Heumann A, Wörner G, Civetta L, Orsi G (2011) Processes and timescales of magma evolution prior to the Campanian Ignimbrite eruption (Campi Flegrei, Italy). Earth Planet Sci Lett 306:217–228. doi: 10.1016/j.epsl.2011.04.002 CrossRefGoogle Scholar
  2. Barberi F, Innocenti F, Lirer L, Munno R, Pescatore T, Santacroce R (1978) The Campanian Ignimbrite: a major prehistoric eruption in the Neapolitan area (Italy). Bull Volcanol 41:10–31. doi: 10.1007/BF02597680 CrossRefGoogle Scholar
  3. Bronk Ramsey C, Housley RA, Lane CS, Smith VC, Pollard AM (2015) The RESET tephra database and associated analytical tools. Quat Sci Rev 118:33–47. doi: 10.1016/j.quascirev.2014.11.008 CrossRefGoogle Scholar
  4. Brown RJ, Bonadonna C, Durant AJ (2012) A review of volcanic ash aggregation. Phys Chem Earth 65:1474–7065. doi: 10.1016/j.pce.2011.11.001 Google Scholar
  5. Cappelletti P, Cerri G, Colella A, de’Gennaro M, Langella A, Perrotta A, Scarpati C (2003) Post-eruptive processes in the Campanian Ignimbrite. Mineral Petrol 79:79–97. doi: 10.1007/s00710-003-0003-7 CrossRefGoogle Scholar
  6. Caron BT, Sulpizio R, Zanchetta G, Siani G, Santacroce R (2010) The Late Holocene to Pleistocene tephrostratigraphic record of Lake Ohrid (Albania). CR Geosci 342:453–466. doi: 10.1016/j.crte.2010.03.007 CrossRefGoogle Scholar
  7. Civetta L, Orsi G, Pappalardo L, Fisher RV, Heiken G, Ort M (1997) Geochemical zoning, mingling, eruptive dynamics and depositional processes—the Campanian Ignimbrite, Campi Flegrei caldera, Italy. J Volcanol Geotherm Res 75:183–219. doi: 10.1016/S0377-0273(96)00027-3 CrossRefGoogle Scholar
  8. Costa A, Folch A, Macedonio G, Giaccio B, Isaia R, Smith VC (2012) Quantifying volcanic ash dispersal and impact of the Campanian Ignimbrite super-eruption. Geophys Res Lett 39, L10310. doi: 10.1029/2012GL051605 CrossRefGoogle Scholar
  9. Costa A, Macedonio G, Folch A (2006) A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet Sci Lett 241:634–647. doi: 10.1016/j.epsl.2005.11.019 CrossRefGoogle Scholar
  10. Costa A, Smith VC, Macedonio G, Matthews NE (2014) The magnitude and impact of the Youngest Toba Tuff super-eruption. Front Earth Sci 2:1–8. doi: 10.3389/feart.2014.00016 CrossRefGoogle Scholar
  11. Costa A, Sparks RSJ, Macedonio G, Melnik O (2009) Effects of wall-rock elasticity on magma flow in dykes during explosive eruptions. Earth Planet Sci Lett 288:455–462. doi: 10.1016/j.epsl.2009.10.006 CrossRefGoogle Scholar
  12. Cullen VL, Smith VC, Arz HW (2014) The detailed tephrostratigraphy of a core from the south-east Black Sea spanning the last ∼ 60 ka. J Quat Sci 29:675–690. doi: 10.1002/jqs.2739 CrossRefGoogle Scholar
  13. Damaschke M, Sulpizio R, Zanchetta G, Wagner B, Böhm A, Nowaczyk N, Rethemeyer J, Hilgers A (2013) Tephrostratigraphic studies on a sediment core from Lake Prespa in the Balkans. Clim Past 9:267–287. doi: 10.5194/cp-9-267-2013 CrossRefGoogle Scholar
  14. De Vivo B, Rolandi G, Gans PB, Calvert A, Bohrson WA, Spera FJ, Belkin HE (2001) New constraints on the pyroclastic eruptive history of the Campanian volcanic Plain (Italy). Mineral Petrol 73:47–65. doi: 10.1007/s007100170010 CrossRefGoogle Scholar
  15. Douka K, Jacobs Z, Lane C, Grün R, Farr L, Hunt C, Inglis RH, Reynolds T, Albert P, Aubert M, Cullen V, Hill E, Kinsley L, Roberts RG, Tomlinson EL, Wulf S, Barker G (2014) The chronostratigraphy of the Haua Fteah cave (Cyrenaica, northeast Libya). J Hum Evol 66:39–63. doi: 10.1016/j.jhevol.2013.10.001 CrossRefGoogle Scholar
  16. Engwell SL, Sparks RSJ, Carey S (2014) Physical characteristics of tephra layers in the deep sea realm: the Campanian Ignimbrite eruption. In: Austin WEN, Abbott PM, Davies SM, Pearce NJG, Wastegard S (eds) Marine Tephrochronology, vol 398. Geological Society, London, Special Publications, p 47–64. doi: 10.1144/SP398.7
  17. Evans JR, Huntoon JE, Rose WI, Varley NR, Stevenson JA (2009) Particle sizes of andesitic ash fallout from vertical eruptions and co-pyroclastic flow clouds, Volcan de Colima, Mexico. Geology 37:935–938. doi: 10.1130/G30208A.1 CrossRefGoogle Scholar
  18. Eychenne J, Cashman K, Rust A, Durant A (2015) Impact of the lateral blast on the spatial pattern and grain size characteristics of the 18 May 1980 Mount St. Helens fallout deposit. J Geophys Res Solid Earth 120:6018–6038. doi: 10.1002/(ISSN)2169-9356 CrossRefGoogle Scholar
  19. Eychenne J, Le Pennec JL, Troncoso L, Gouhier M, Nedelec JM (2012) Causes and consequences of bimodal grain-size distribution of tephra fall deposited during the August 2006 Tungurahua eruption (Ecuador). Bull Volcanol 74:187–205. doi: 10.1007/s00445-011-0517-5 CrossRefGoogle Scholar
  20. Fedele FG, Giaccio B, Isaia R, Orsi G (2003) The Campanian Ignimbrite Eruption, Heinrich Event 4, and Palaeolithic change in Europe: A high-resolution investigation. In: Robock A, Oppenheimer C (eds) Volcanism and the Earth’s Atmosphere, vol 139. Geophysical Monograph Series, American Geophysical Union, Washington, D. C., p 301–325. doi: 10.1029/139GM20
  21. Fedele FG, Giaccio B, Hajdas I (2008a) Timescales and cultural process at 40,000 BP in the light of the Campanian Ignimbrite eruption, Western Eurasia. J Hum Evol 55:834–857. doi: 10.1016/j.jhevol.2008.08.012 CrossRefGoogle Scholar
  22. Fedele L, Scarpati C, Lanphere M, Melluso L, Morra V, Perrotta A, Ricci G (2008b) The Breccia Museo formation, Campi Flegrei, southern Italy: geochronology, chemostratigraphy and relationship with the Campanian Ignimbrite eruption. Bull Volcanol 70:1189–1219. doi: 10.1007/s00445-008-0197-y CrossRefGoogle Scholar
  23. Fisher RV, Orsi G, Ort M, Heiken G (1993) Mobility of a large-volume pyroclastic flow-emplacement of the Campanian ignimbrite, Italy. J Volcanol Geotherm Res 56:205–220. doi: 10.1016/0377-0273(93)90017-L CrossRefGoogle Scholar
  24. Giaccio B, Isaia R, Fedele FG, Di Canzio E, Hoffecker J, Ronchitelli A, Sinitsyn AA, Anikovich M, Lisitsyn SN, Popov VV (2008) The Campanian Ignimbrite and Codola tephra layers: two temporal/stratigraphic markers for the early Upper Palaeolithic in southern Italy and eastern Europe. J Volcanol Geotherm Res 177:208–226. doi: 10.1016/j.jvolgeores.2007.10.007 CrossRefGoogle Scholar
  25. Hildreth W (1983) The compositionally zoned eruption of 1912 in the Valley of Ten Thousand Smokes, Katmai National Park, Alaska. J Volcanol Geotherm Res 18:1–56. doi: 10.1016/0377-0273(83)90003-3 CrossRefGoogle Scholar
  26. Ivanova S, Gurova M, Spassov N, Hristova L, Tzankov N, Popov V, Marinova E, Makedonska J, Smith V, Ottoni C, Lewis M (2016) Magura Cave, Bulgaria: a multidisciplinary study of Late Pleistocene human palaeoenvironment in the Balkans. Quat Int. doi: 10.1016/j.quaint.2015.11.082 Google Scholar
  27. Jochum KP, Stoll B, Herwig K, Willbold M, Hofmann AW, Amini M, Aarburg S, Abouchami W, Hellebrand E, Mocek B, Raczek I, Stracke A, Alard O, Bouman C, Becker S, Dücking M, Brätz H, Klemd R, de Bruin D, Canil D, Cornell D, de Hoog C, Dalpé C, Danyushevsky L, Eisenhauer A, Gao Y, Snow JE, Groschopf N, Günther D, Latkoczy C, Guillong M, Hauri E, Höfer HE, Lahaye Y, Horz K, Jacob DE, Kasemann SA, Kent AJR, Ludwig T, Zack T, Mason PRD, Meixner A, Rosner M, Misawa K, Nash BP, Pfänder J, Premo WR, Sun WD, Tiepolo M, Vannucci R, Vennemann T, Wayne D, Woodhead JD (2006) MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios. Geochem Geophys Geosyst 7, Q02008. doi: 10.1029/2005GC001060 CrossRefGoogle Scholar
  28. Keller J, Ryan WBF, Ninkovich D, Altherr R (1978) Explosive volcanic activity in the Mediterranean over the past 200,000 yr as recorded in deep-sea sediments. Geol Soc Am Bull 89:591–604. doi: 10.1130/0016-7606(1978)89<591:EVAITM>2.0.CO;2 CrossRefGoogle Scholar
  29. Koyaguchi T, Suzuki YJ, Kozono T (2010) Effects of the crater on eruption column dynamics. J Geophys Res 115, B07205. doi: 10.1029/2009JB007146 CrossRefGoogle Scholar
  30. Lowe JJ, Barton N, Blockley S, Ramsey CB, Cullen VL, Davies W, Gamble C, Grant K, Hardiman M, Housley R, Lane CS, Lee S, Lewis M, MacLeod A, Menzies MA, Muller W, Pollard M, Price C, Roberts AP, Rohling EJ, Satow C, Smith VC, Stringer CB, Tomlinson EL, White D (2012) Volcanic ash layers illuminate the resilience of Neanderthals and early modern humans to natural hazards. Proc Natl Acad Sci U S A 109:13532–13537CrossRefGoogle Scholar
  31. Lowe JJ, Ramsey CB, Housley RA, Lane CS, Tomlinson EL, RESET Team, RESET Associates (2015) The RESET project: constructing a European tephra lattice for refined synchronisation of environmental and archaeological events during the last c. 100 ka. Quat Sci Rev 118:1–17. doi: 10.1016/j.quascirev.2015.04.006 CrossRefGoogle Scholar
  32. Margari V, Pyle DM, Bryant C, Gibbard PL (2007) Mediterranean tephra stratigraphy revisited: results from a long terrestrial sequence on Lesvos island, Greece. J Volcanol Geotherm Res 163:34–54. doi: 10.1016/j.jvolgeores.2007.02.002 CrossRefGoogle Scholar
  33. Marianelli P, Sbrana A, Proto M (2006) Magma chamber of the Campi Flegrei supervolcano at the time of eruption of the Campanian Ignimbrite. Geology 34:937–940. doi: 10.1130/G22807A.1 CrossRefGoogle Scholar
  34. Marti A, Folch A, Costa A, Engwell S (2016) Reconstructing the plinian and co-ignimbrite sources of large volcanic eruptions: a novel approach for the Campanian Ignimbrite. Sci Rep 6:21220. doi: 10.1038/srep21220 CrossRefGoogle Scholar
  35. Matthews NE, Smith VC, Costa A, Durant AJ, Pyle DM, Pearce NJG (2012) Ultra-distal tephra deposits from super-eruptions: examples from Toba, Indonesia and Taupo Volcanic Zone, New Zealand. Quat Int 258:54–79. doi: 10.1016/j.quaint.2011.07.010 CrossRefGoogle Scholar
  36. Morley MW, Woodward JC (2011) The Campanian Ignimbrite (Y5) tephra at Crvena Stijena Rockshelter, Montenegro. Quat Res 75:683–696. doi: 10.1016/j.yqres.2011.02.005 CrossRefGoogle Scholar
  37. Pappalardo L, Civetta L, De Vita S, Di Vito M, Orsi G, Carandente A, Fisher RV (2002) Timing of magma extraction during the Campanian Ignimbrite eruption (Campi Flegrei Caldera). J Volcanol Geotherm Res 114:479–497. doi: 10.1016/S03770273(01)00302-X CrossRefGoogle Scholar
  38. Pappalardo L, Ottolini L, Mastrolorenzo G (2007) The Campanian Ignimbrite (southern Italy) geochemical zoning: insight on the generation of a super-eruption from catastrophic differentiation and fast withdrawal. Contrib Mineral Petrol 156:1–26. doi: 10.1007/s00410-007-0270-0 CrossRefGoogle Scholar
  39. Paterne M, Guichard F, Labeyrie J (1988) Explosive activity of the South Italian volcanoes during the past 80,000 years as determined by marine tephrochronology. J Volcanol Geotherm Res 34:153–172. doi: 10.1016/0377-0273(88)90030-3 CrossRefGoogle Scholar
  40. Perrotta A, Scarpati C (2003) Volume partition between the plinian and co-ignimbrite air fall deposits of the Campanian Ignimbrite eruption. Mineral Petrol 79:67–78. doi: 10.1007/s00710-003-0002-8 CrossRefGoogle Scholar
  41. Pyle DM, Ricketts GD, Margari V, van Andel TH, Sinitsyn AA, Praslov ND, Lisitsyn S (2006) Wide dispersal and deposition of distal tephra during the Pleistocene “Campanian Ignimbrite/Y5” eruption, Italy. Quat Sci Rev 25:2713–2728. doi: 10.1016/j.quascirev.2006.06.008 CrossRefGoogle Scholar
  42. Rolandi G, Bellucci F, Heizler MT, Belkin HE, De Vivo B (2003) Tectonic controls on the genesis of ignimbrites from the Campanian Volcanic Zone, southern Italy. Mineral Petrol 79:3–31. doi: 10.1007/s00710-003-0014-4 CrossRefGoogle Scholar
  43. Rose WI, Self S, Murrow PJ, Bonadonna C, Durant AJ, Ernst GGJ (2008) Nature and significance of small volume fall deposits at composite volcanoes: insights from the October 14, 1974 Fuego eruption, Guatemala. Bull Volcanol 70:1043–1067. doi: 10.1007/s00445-007-0187-5 CrossRefGoogle Scholar
  44. Rosi M, Vezzoli L, Aleotti P, De Censi M (1996) Interaction between caldera collapse and eruptive dynamics during the Campanian Ignimbrite eruption, Phlegraean Fields, Italy. Bull Volcanol 57:541–554. doi: 10.1007/BF00304438 CrossRefGoogle Scholar
  45. Rosi M, Vezzoli L, Castelmenzano A, Grieco G (1999) Plinian pumice fall deposit of the Campanian Ignimbrite eruption (Phlegraean Fields, Italy). J Volcanol Geotherm Res 91:179–198. doi: 10.1016/S0377-0273(99)00035-9 CrossRefGoogle Scholar
  46. Scarpati C, Perrotta A (2012) Erosional characteristics and behavior of large pyroclastic density currents. Geology 40:1035–1038. doi: 10.1130/G33380.1 CrossRefGoogle Scholar
  47. Scott RB (1971) Alkali exchange during devitrification and hydration of glasses in ignimbrite cooling units. J Geol 79:100–110CrossRefGoogle Scholar
  48. Signorelli S, Vaggelli G, Francalanci L, Rosi M (1999) Origin of magmas feeding the Plinian phase of the Campanian Ignimbrite eruption, Phlegrean Fields (Italy): constraints based on matrix-glass and glass-inclusion compositions. J Volcanol Geotherm Res 91:199–220. doi: 10.1016/S0377-0273(99)00036-0 CrossRefGoogle Scholar
  49. Sparks RSJ, Huang TC (1980) The volcanological significance of deep sea tephra layers associated with ignimbrites. Geol Mag 117:425–436. doi: 10.1017/S0016756800028533 CrossRefGoogle Scholar
  50. Sun C, Plunkett G, Liu J, Zhao H, Sigl M (2014) Ash from Changbaishan Millennium eruption recorded in Greenland ice: implications for determining the eruption’s timing and impact. Geophys Res Lett 41. doi: 10.1002/2013GL058642
  51. Tomlinson EL, Albert PG, Wulf S, Brown RJ, Smith VC, Keller J, Orsi G, Bourne AJ, Menzies MA (2014) Age and geochemistry of tephra layers from Ischia, Italy: constraints from proximal-distal correlations with Lago Grande di Monticchio. J Volcanol Geotherm Res 287:22–39. doi: 10.1016/j.jvolgeores.2014.09.006 CrossRefGoogle Scholar
  52. Tomlinson EL, Arienzo I, Wulf S, Smith VC, Carandente A, Civetta L, Hardiman M, Lane CS, Orsi G, Rosi M, Thirlwall MT, Muller W, Menzies MA (2012) Geochemistry of the Phlegraean Fields (Italy) proximal sources for major Mediterranean tephras: implications for the dispersal of Plinian and co-ignimbritic components of explosive eruptions. Geochim Cosmochim Acta 93:102–128. doi: 10.1016/j.gca.2012.05.043 CrossRefGoogle Scholar
  53. Veres D, Lane CS, Timar-Gabor A, Hambach U, Constantin D, Szakács A, Füllinge A, Onac BP (2013) The Campanian Ignimbrite/Y5 tephra layer—a regional stratigraphic marker for Isotope Stage 3 deposits in the Lower Danube region, Romania. Quat Int 293:22–33. doi: 10.1016/j.quaint.2012.02.042 CrossRefGoogle Scholar
  54. Vigliotti L (2015) Magnetic properties of the Campanian Ignimbrite and the marine Y5 tephra layer. In: Ort MH, Porreca M, Geissman JW (eds) The Use of Palaeomagnetism and Rock Magnetism to Understand Volcanic Processes, vol 396. Geological Society, London, Special Publications, p 227–238. doi: 10.1144/SP396.1
  55. Vitale S, Isaia R (2014) Fractures and faults in volcanic rocks (Campi Flegrei, southern Italy): insight into volcano-tectonic processes. Int J Earth Sci 103:801–819. doi: 10.1007/s00531-013-0979-0 CrossRefGoogle Scholar
  56. Vogel H, Zanchetta G, Sulpizio R, Wagner B, Nowaczyk N (2010) A tephrostratigraphic record for the last glacial-interglacial cycle from Lake Ohrid, Albania and Macedonia. J Quat Sci 25:320–338. doi: 10.1002/jqs.1311 CrossRefGoogle Scholar
  57. Wagner B, Sulpizio R, Zanchetta G, Wulf S, Wessels M, Daut G, Nowaczyk N (2008) The last 40 ka tephrostratigraphic record of Lake Ohrid, Albania and Macedonia: a very distal archive for ash dispersal from Italian volcanoes. J Volcanol Geotherm Res 177:71–80. doi: 10.1016/j.jvolgeores.2007.08.018 CrossRefGoogle Scholar
  58. Watkins ND, Sparks R, Sigurdsson H, Huang TC, Federman A, Carey S, Ninkovich D (1978) Volume and extent of the Minoan tephra from Santorini Volcano: new evidence from deep-sea sediment cores. Nature 271:122–126. doi: 10.1038/271122a0 CrossRefGoogle Scholar
  59. Wilson CJN, Blake S, Charlier BLA, Sutton AN (2005) The 26.5 ka Oruanui eruption, Taupo Volcano, New Zealand: development, characteristics and evacuation of a large Rhyolitic magma body. J Petrol 47:35–69. doi: 10.1093/petrology/egi066 CrossRefGoogle Scholar
  60. Wohletz KH, Sheridan MF, Brown WK (1989) Particle size distributions and the sequential fragmentation/transport theory applied to volcanic tephra. J Volcanol Geotherm Res 94:15703–15721. doi: 10.1029/JB094iB11p15703 Google Scholar
  61. Wood R, Douka K, Boscato P, Haesaerts P, Sinitsyn A, Higham TFG (2012) Testing the ABOx-SC method: dating known-age charcoals associated with the Campanian Ignimbrite. Quat Geochronol 9:16–26. doi: 10.1016/j.quageo.2012.02.003 CrossRefGoogle Scholar
  62. Wulf S, Kraml M, Brauer A, Keller J, Negendank JFW (2004) Tephrochronology of the 100ka lacustrine sediment record of Lago Grande di Monticchio (southern Italy). Quat Int 122:7–30. doi: 10.1016/j.quaint.2004.01.028 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Victoria C. Smith
    • 1
    Email author
  • Roberto Isaia
    • 2
  • Sam L. Engwell
    • 3
  • Paul. G. Albert
    • 1
  1. 1.Research Laboratory for Archaeology and the History of ArtUniversity of OxfordOxfordUK
  2. 2.Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio VesuvianoNaplesItaly
  3. 3.Istituto Nazionale di Geofisica e VulcanologiaPisaItaly

Personalised recommendations