Skip to main content

Advertisement

Log in

Evidence from cosmic ray exposure (CRE) dating for the existence of a pre-Minoan caldera on Santorini, Greece

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Cosmic ray exposure (CRE) dating was performed on the caldera cliffs of Santorini with the aim of detecting cliff segments predating the Minoan eruption (17th century BCE). The methodology involved the determination of in situ-produced cosmogenic 36Cl concentration in basaltic-to-rhyodacitic whole rocks cropping out in the cliffs. After the samples were processed following the chemical protocol of 36Cl preparation for silicate rocks, 36Cl concentrations were measured by accelerator mass spectrometry (AMS). Important challenges during the implementation procedure were related to large amounts of radiogenic 36Cl, complex modeling of inherited 36Cl, and dominance of the thermal and epithermal (low-energy) neutron capture production pathway. Nevertheless, quantitative assessments on the basis of the contribution of the low-energy neutron capture pathway percent to the total production rate validated the calculated CRE dates. Current CRE ages demonstrate that an ancient caldera existed on pre-Minoan Santorini, occupying at least the northern half of the modern-day caldera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anadón P, Canet C, Friedrich W (2013) Aragonite stromatolitic buildups from Santorini (Aegean Sea, Greece): geochemical and palaeontological constraints of the caldera palaeoenvironment prior to the Minoan eruption (ca 3600 year bp). Sedimentology 60:1128–1155

    Article  Google Scholar 

  • Benedetti L, Finkel R, Papanastassiou D, King G, Armijo R, Ryerson FJ, Farber D, Flerit F (2002) Postglacial slip history of the Sparta fault (Greece) determined by Cl-36 cosmogenic dating: evidence for non-periodic earthquakes. Geophys Res Lett 29:8701–8704

    Article  Google Scholar 

  • Blard PH, Lavé J, Pik R, Quidelleur X, Bourlés D, Kieffer G (2005) Fossil cosmogenic 3He record from K–Ar dated basaltic flows of Mount Etna volcano (Sicily, 38 °N): evaluation of a new paleoaltimeter. Earth Planet Sci Lett 236:613–631

    Article  Google Scholar 

  • Bond A, Sparks RSJ (1976) The Minoan eruption of Santorini, Greece. J Geol Soc Lond 132:1–16

    Article  Google Scholar 

  • Braucher R, Del Castillo P, Siame L, Hidy AJ, Bourlès DL (2009) Determination of both exposure time and denudation rate from an in situ-produced 10Be depth profile: a mathematical proof of uniqueness. Model sensitivity and applications to natural cases. Quat Geochronol 4:56–67

    Article  Google Scholar 

  • Braucher R, Merchel S, Borgomano J, Bourlès DL (2011) Production of cosmogenic radionuclides at great depth: a multi element approach. Earth Planet Sci Lett 309:1–9

    Article  Google Scholar 

  • Budetta G, Condarelli D, Fytikas M, Kolios N, Pascale G, Rapolla A, Pinna E (1984) Geophysical prospecting on the Santorini Islands. Bull Volcanol 47:447–465

    Article  Google Scholar 

  • Cadoux A, Scaillet B, Druitt TH, Deloule E (2014) Magma storage conditions of large Plinian eruptions of Santorini volcano (Greece). J Petrol 55:1129–1171

    Article  Google Scholar 

  • Croff Bell KL, Carey SN, Nomikou P, Sigurdsson H, Sakellariou D (2013) Submarine evidence of a debris avalanche deposit on the eastern slope of Santorini volcano, Greece. Tectonophysics 597–598:147–160

    Article  Google Scholar 

  • Davis RJ, Schaeffer OA (1955) Chlorine-36 in nature. Ann N Y Acad Sci 62:105–122

    Article  Google Scholar 

  • Doumas C (1990) Archaeological observations at Akrotiri relating to the volcanic destruction. In: Hardy DA et al. (eds) Thera and the Aegean World III/3, p 48–50

  • Druitt TH (2014) New insights into the initiation and venting of the Bronze-Age eruption of Santorini (Greece), from component analysis. Bull Volcanol 76:794. doi:10.1007/s00445-014-0794-x

    Article  Google Scholar 

  • Druitt TH, Francaviglia V (1990) An ancient caldera cliff line at Phira, and its significance for the topography and geology of pre-Minoan Santorini. In: Hardy DA et al (eds) Thera and the Aegean world III/2, p 362–376

  • Druitt TH, Francaviglia V (1992) Caldera formation on Santorini and the physiography of the islands in the late Bronze Age. Bull Volcanol 54:484–493

    Article  Google Scholar 

  • Druitt TH, Edwards L, Mellors R, Pyle DM, Sparks RSJ, Lanphere M, Davies M, Barriero B (1999) Santorini volcano. Geol Soc Lond Mem 19, 165pp

  • Dunai T (2010) Cosmogenic nuclides: principles, concepts and applications in the earth surface sciences. Cambridge University Press, 187pp

  • Dunai T, Stuart FM (2009) Reporting of cosmogenic nuclide data for exposure age and erosion rate determinations. Quat Geochronol 4:437–440

    Article  Google Scholar 

  • Eriksen U, Friedrich WL, Buchardt B, Tauber H and Thomsen MS (1990) The Stronghyle caldera: geological, palaeotological and stable isotope evidence from radiocarbon dated stromatolites from Santorini. In: Hardy DA et al (eds) Thera and the Aegean World III/2, p 139–150

  • Fabbro GN, Druitt TH, Scaillet S (2013) Evolution of the crustal magma plumbing system during the build-up to the 22-ka caldera-forming eruption of Santorini (Greece). Bull Volcanol 75:767. doi:10.1007/s00445-013-0767-5

    Article  Google Scholar 

  • Fabryka-Martin JT (1988) Production of radionuclides in the earth and their hydrogeologic significance, with emphasis on chlorine-36 and iodine-129. pp 400 Ph.D. thesis, University of Arizona, USA

  • Fifield LK, Ophel TR, Allan GL, Bird JR, Davie RF (1990) Accelerator mass spectrometry at the Australian National University’s 14UD accelerator: experience and developments. Nucl Instrum Meth Phys Res Sect B52:233–237

    Article  Google Scholar 

  • Friedrich WL, Eriksen U, Tauber H, Heinemeier J, Rud N, Thomsen MS, Buchardt B (1988) Existence of a water-filled caldera prior to the Minoan eruption of Santorini, Greece. Naturwissenschaften 75:567–569

    Article  Google Scholar 

  • Friedrich WL, Kromer B, Friedrich M, Heinemeier J, Pfeiffer T, Talamo S (2006) Santorini eruption radiocarbon dated to 1627–1600 B.C. Science 312:548

    Article  Google Scholar 

  • Fytikas M, Karydakis G, Kavourdis T, Kolios N and Vougioukalakis G (1990) Geothermal research on Santorini. In: Hardy DA et al. (eds) Thera and the Aegean World III/2,241–249

  • Gertisser R, Preece K, Keller J (2009) The Plinian Lower Pumice 2 eruption, Santorini, Greece: magma evolution and volatile behaviour. J. Volcanol. Geotherm Res 186:387–406

  • Gosse JC, Phillips FM (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quat Sci Rev 20:1475–1560

    Article  Google Scholar 

  • Heiken G, McCoy F (1984) Caldera development during the Minoan eruption, Thira, Cyclades, Greece. J Geophys Res 89(B10):8841–8862

    Article  Google Scholar 

  • Johnston EN, Sparks RSJ, Phillips JC, Carey S (2014) Revised estimates for the volume of the Late Bronze Age Minoan eruption, Santorini, Greece. J Geol Soc Lond 171:583–590

    Article  Google Scholar 

  • Johnston EN, Sparks RSJ, Nomikou P, Livanos I, Carey S, Phillips JC, Sigurdsson H (2015) Stratigraphic relations of Santorini’s intracaldera fill and implications for the rate of post-caldera volcanism. J Geol Soc. doi:10.1144/jgs2013-114

    Google Scholar 

  • Lagios E, Sakkas V, Novali F, Belotti F, Feretti A, Vlachou K, Dietrich V (2013) SqueeSAR™ and GPS ground deformation monitoring of Santorini Volcano (1992–2012): tectonic implications. Tectonophysics 594:38–59

    Article  Google Scholar 

  • Lal D (1991) Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet Sci Lett 104:424–439

    Article  Google Scholar 

  • Licciardi JM, Denoncourt CL, Finkel RC (2008) Cosmogenic 36Cl production rates from Ca spallation in Iceland. Earth Planet Sci Lett 267:365–377

    Article  Google Scholar 

  • Marinatos S (1939) The volcanic destruction of Minoan Crete. Antiquity 13:425–439

    Article  Google Scholar 

  • Marrero SM, Phillips FM, Caffee MW, Gosse JC (2016) CRONUS-Earth cosmogenic 36Cl calibration. Quat Geochronol 31:199–219

    Article  Google Scholar 

  • Nomikou P, Carey S, Papanikolaou D, Croff Bell K, Sakellariou D, Alexandri M, Bejelou K (2012) Submarine volcanoes of the Kolumbo volcanic zone NE of Santorini Caldera, Greece. Glob Planet Chang 90–91:135–151. doi:10.1016/j.gloplacha.2012.01.001

    Article  Google Scholar 

  • Nomikou P, Papanikolaou D, Alexandri M, Sakellariou D, Rousakis G (2013) Submarine volcanoes along the Aegean volcanic arc. Tectonophysics 19:123–146

    Article  Google Scholar 

  • Nomikou P, Parks MM, Papanikolaou D, Pyle D, Mather TA, Carey S, Watts AB, Paulatto M, Kalnins ML, Livanos I, Bejelou K, Simou E, Perros I (2014) The emergence and growth of a submarine volcano: the Kameni islands, Santorini (Greece). Geogr Res (J Inst Aust Geogr) 1–2:8–18

    Google Scholar 

  • Papageorgiou E, Tzanis A, Sotiropoulos P, Lagios E (2010) DGPS and magnetotelluric constraints on the contemporary tectonics of the Santorini volcanic complex, Greece. Bulletin of the Geological Society of Greece XLLIII, p 344–356

  • Perissoratis C (1990) Marine geological research on Santorini: preliminary results. In Hardy DA et al. (eds) Thera and the Aegean World III/2, p 305–311

  • Perissoratis C (1995) The Santorini volcanic complex and its relation to the stratigraphy and structure of the Aegean arc, Greece. Mar Geol 128:37–58

    Article  Google Scholar 

  • Phillips FM (2003) Cosmogenic 36Cl ages of quaternary basalt flows in the Mojave Desert, California, USA. Geomorphology 53:199–208

    Article  Google Scholar 

  • Phillips FM, Stone WD, Fabryka-Martin J (2001). An improved approach to calculating low-energy cosmic-ray neutron fluxes near the land/atmosphere interface. Chemical Geology 175:689–701

  • Phillips FM, Leavy BD, Jannik NO, Elmore D, Kubik PW (1986) The accumulation of cosmogenic chlorine-36 in rocks. A method for surface exposure dating. Science 231:41–43

    Article  Google Scholar 

  • Phillips FM, Argento DC, Balco G, Caffee MW, Clem J, Dunai TJ, Finkel R, Goehering B, Gosse JC, Hudson AM, Jull AJT, Kelly MA, Kurz M, Lal D, Lifton N, Marrero SM, Nishiizumi K, Reedy RC, Schaefer J, Stone JOH, Swanson T, Zreda MG (2016) The CRONUS-Earth project: a synthesis. Quat Geochronol 31:119–154

    Article  Google Scholar 

  • Pyle DM, Elliott JR (2006) Quantitative morphology, recent evolution, and future activity of the Kameni Islands volcano, Santorini, Greece. Geosphere 2:253–268. doi:10.1130/GES00028.1

    Article  Google Scholar 

  • Sanchez G, Rolland Y, Corsini M, Braucher R, Bourlès D, Arnold M, Aumaître G (2010) Relationships between tectonics, slope instability and climate change: cosmic ray exposure dating of active faults, landslides and glacial surfaces in the SW Alps. Geomorphology 117:1–13

    Article  Google Scholar 

  • Schimmelpfennig I, Benedetti L, Finkel R, Pik R, Blard PH, Bourlès D, Burnard P, Williams A (2009) Sources of in situ 36Cl in basaltic rocks. Implications for calibration of production rates. Quat Geochronol 4:441–461

    Article  Google Scholar 

  • Schimmelpfennig I, Benedetti L, Garreta V, Pik R, Blard PH, Burnard P, Bourlès D, Finkel R, Ammon K, Dunai T (2011) Calibration of cosmogenic 36Cl production rates from Ca and K spallation in lava flows from Mt. Etna (38°N, Italy) and Payun. Matru (36°S, Argentina). Geochim Cosmochim Acta 75:2611–2632

    Article  Google Scholar 

  • Schimmelpfennig I, Schaefer JM, Putnam AE, Koffman T, Benedetti L, Ivy-Ochs S, Team ASTER, Schlüchter C (2014) 36Cl production rate from K-spallation in the European Alps (Chironico landslide, Switzerland). J Quat Sci 29:407–413

    Article  Google Scholar 

  • Sharma P, Kubik PW, Fehn U, Gove HE, Nishiizumi K, Elmore D (1990) Development of 36Cl standards for AMS. Nucl Instrum Methods Phys Res, Sect B 52:410–415

    Article  Google Scholar 

  • Shepard MK, Arvidson RE, Caffee M, Finkel R, Harris L (1995) Cosmogenic exposure ages of basalt flows: Lunar Crater volcanic field, Nevada. Geology 23:21–24

    Article  Google Scholar 

  • Sigurdsson H, Carey S, Alexandri M, Vougioukalakis G, Croff K, Roman C, Sakellariou D, Anagnostou C, Rousakis G, Ioakim C, Gogou A, Ballas D, Misaridis T, Nomikou P (2006) Marine investigations of Greece’s Santorini volcanic field. Eos 87(34):337–339

    Article  Google Scholar 

  • Stone JO (2000) Air pressure and cosmogenic isotope production. J Geophys Res 105/B10:23753–23759

    Article  Google Scholar 

  • Stone JO, Allan GL, Fifield LK, Cresswell RG (1996) Cosmogenic chlorine-36 from calcium spallation. Geochim Cosmochim Acta 60:679–692

    Article  Google Scholar 

  • Stone JOH, Evans JM, Fifield LK, Allan GL, Cresswell RG (1998) Cosmogenic chlorine-36 production in calcite by muons. Geochim Cosmochim Acta 62:433–454

    Article  Google Scholar 

  • Vogt S, Elmore D, Sharma P, Dunne A (1996) The 36Cl/36Cl method for determining exposure time and erosion rates of surfaces. Radiocarbon 38:122

    Google Scholar 

Download references

Acknowledgments

This work is a contribution to the Labex OT-Med (no. ANR-11-LABX-0061) funded by FMSH, the European Commission’s Action Marie Curie COFUND Programme, and the French Government «Investissements d’Avenir» program of the French National Research Agency (ANR) through the A*MIDEX project (no. ANR-11-IDEX-0001-02) and the Frenand Braudel-IFER fellowship. M. Arnold, G. Aumaître, and K. Keddadouche are thanked for their valuable assistance during 36Cl measurements at the ASTER AMS national facility (CEREGE, Aix-en-Provence) which is supported by the INSU/CNRS, the ANR through the “Projets thématiques d’excellence” program for the “Equipements d’excellence” ASTER-CEREGE action, IRD, and CEA. This is a Laboratory of Excellence ClerVolc contribution. Authors thank Darryl Granger (Purdue University, USA) for constructive discussion, as well as an anonymous reviewer. The authors are thankful to Vaggelis Nomikos, resident of Santorini, for sailing them across the caldera for sample collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. D. Athanassas.

Additional information

Editorial responsibility: G. Giordano

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athanassas, C.D., Bourlès, D.L., Braucher, R. et al. Evidence from cosmic ray exposure (CRE) dating for the existence of a pre-Minoan caldera on Santorini, Greece. Bull Volcanol 78, 35 (2016). https://doi.org/10.1007/s00445-016-1026-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1026-3

Keywords

Navigation