Bulletin of Volcanology

, 78:33 | Cite as

Degassing and magma mixing during the eruption of Surtsey Volcano (Iceland, 1963–1967): the signatures of a dynamic and discrete rift propagation event

  • C. Ian SchipperEmail author
  • Marion Le Voyer
  • Yves Moussallam
  • James D. L. White
  • Thor Thordarson
  • Jun-Ichi Kimura
  • Qing Chang
Research Article


The eruption of Surtsey (Iceland, 1963–1967) is a rare example of observed volcanism at a propagating rift tip, where Iceland’s Eastern Volcanic Zone is advancing southwesterly toward the Reykjanes Ridge. We use olivine-hosted melt inclusions, embayments, and matrix glasses to investigate major element, trace element, and volatile characteristics of Surtsey’s magmatic system, and to parameterize decompression models that describe degassing of C-H-S-O species during this well-studied eruption. Major elements show that the inclusions represent heterogeneous melts with a range of compositions similar to those of Icelandic lavas. Trace elements discriminate between two groups of inclusions: the majority are compositionally similar to Eastern Volcanic Zone alkalic basalts, and the remainder are notably more depleted in incompatible trace elements and trend toward fields defined by tholeiites on and around Iceland. Strongly correlated Cl and Nb for all inclusions indicates that seawater did not affect Surtsey’s volatile budget, despite having clearly affected its eruption style. Both types of inclusions are volatile rich (≤1.47 wt.% H2O; ≤2534 ppm CO2 as measured or ≤5286 ppm once corrected for vapor bubbles and post-entrapment crystallization). They are more hydrous than primary melts in the onshore Eastern Volcanic Zone and have parental CO2/Nb (≤590) at the upper end of regional estimates. Saturation pressures calculated from corrected CO2 values indicate that melts in both inclusion types initially crystallized at similar depths in the upper mantle (17–21 km), and then partially crystallized during ascent through the lower crust (7–13 km). Historical data show that gases emitted on Surtsey shifted from being relatively reduced in 1964/1965 to more oxidized in 1967, after a protracted period of effusive activity and resurgence of pyroclastic activity from satellite vents. Closed-system degassing models predict the compositions and redox states of the 1964/1965 gases extremely well, but cannot account for the oxidized gases emitted in 1967, which may have been contaminated by ambient air in a system that was opening as the eruption waned. Surtsey’s pyroclastic resurgence can be explained by recharge from ephemeral and compositionally heterogeneous magma bodies, tapped from possibly as deep as the mantle-crust boundary, in a process consistent with the progressively increasing interconnection between magma bodies that is typical at propagating rift tips. The eruption of Surtsey therefore shows that magma system evolution at rift tips can occur in dynamic and discrete events, with influx of new magma having explosive consequences.


Surtsey Degassing Volatile Melt inclusion Iceland Rift propagation Vapor bubbles Redox state 



CIS acknowledges support from a RSNZ Cook Fellowship awarded to C.J.N. Wilson, and a JSPS postdoctoral fellowship for work at JAMSTEC. JDLW acknowledges a University of Otago Research Grant, and support from MBIE via a GNS subcontract. Special thanks to the Surtsey Research Society and UNESCO for granting the authors access to the island of Surtsey, and to S.P. Jakobsson for access to samples housed at the Icelandic Institute of Natural History. The authors thank N. Métrich, an anonymous reviewer, and editor P.J. Wallace for insightful comments that helped to improve this work.

Supplementary material

445_2016_1025_MOESM1_ESM.xlsx (83 kb)
Table S1 (XLSX 83 kb)
445_2016_1025_MOESM2_ESM.xlsx (70 kb)
Table S2 (XLSX 70 kb)
445_2016_1025_MOESM3_ESM.xlsx (90 kb)
Table S3 (XLSX 90 kb)
445_2016_1025_MOESM4_ESM.xlsx (87 kb)
Table S4 (XLSX 86 kb)


  1. Aiuppa A, Moretti R, Federico C, Giuidice G, Gurrieri S, Liuzzo M, Papale P, Shinohara H, Valenza M (2007) Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology 35:1115–1118CrossRefGoogle Scholar
  2. Anderson AT Jr, Brown GG (1993) CO2 contents and formation pressures of some Kilauean melt inclusions. Am Mineral 78:794–803Google Scholar
  3. Artemieva IM, Thybo H (2013) EUNAseis: a seismic model for moho and crustal structure in Europe, Greenland, and the north Atlantic region. Tectonophysics 609:97–153CrossRefGoogle Scholar
  4. Baker JA, Schiller M, Bizzarro M (2012) 26Al-26Mg defecit dating ultramafic meteorites and silicate planetesimal differentiation in the early solar system? Geochim Cosmochim Acta 77:415–431CrossRefGoogle Scholar
  5. Bjarnason IT, Menke W, Flóvenz Ó, Caress D (1993) Tomographic image of the Mid-Atlantic plate boundary in southwestern Iceland. J Geophys Res 98(B4):6607–6622CrossRefGoogle Scholar
  6. Brandon AD, Graham DW, Waight T, Gautason B (2007) 186Os and 187Os enrichments and high-3He/4He sources in the earth^s mantle: evidence from Icelandic picrites. Geochim Cosmochim Acta 71:4570–4591CrossRefGoogle Scholar
  7. Burton M, Allard P, Mure F, La Spina A (2007) Magmatic gas composition reveals the source depth of slug-driven strombolian explosive activity. Science 317:227–230CrossRefGoogle Scholar
  8. Cartigny P, Pineau F, Aubaud C, Javoy M (2008) Towards a consistent mantle carbon flux estimate: Insights from volatile systematics (H2O/Ce, δD, Co2/Nb) in the North Atlantic mantle (14° N and 34° N). Earth Planet Sci Lett 265:672–685CrossRefGoogle Scholar
  9. Chekol TA, Kobayashi K, Yokoyama T, Sakaguchi C, Nakamura E (2011) Timescales of magma differentiation from basalt to andesite beneath Hekla volcano, Iceland: constraints from U-series disequilibria in lavas from the last quarter-millennium flows. Geochim Cosmochim Acta 75:256–283CrossRefGoogle Scholar
  10. Christie DM, Sinton JM (1981) Evolution of abyssal lavas along propagating segments of the Galapagos spreading center. Earth Planet Sci Lett 56:321–335CrossRefGoogle Scholar
  11. Christopher TE, Edmonds M, Humphreys MCS, Herd RA (2010) Volcanic gas emissions from Soufrière Hills Volcano, Montserrat 1995–2009, with implications for mafic magma supply and degassing. Geophys Res Lett 37:L00E04CrossRefGoogle Scholar
  12. Darbyshire FA, White RS, Priestley KF (2000) Structure of the crust and uppermost mantle of Iceland from a combined seismic and gravity study. Earth Planet Sci Lett 181:409–428CrossRefGoogle Scholar
  13. Debaille V, Troennes RG, Brandon AD, Waight TE, Graham DW, Lee Cin-Ty A (2009) Primitive off-rift basalts from Iceland and Jan Mayen: os-isotopic evidence for a mantle source containing enriched subcontinental lithosphere. Geochim Cosmochim Acta 73:3423–3449CrossRefGoogle Scholar
  14. Dixon JE, Clague DA, Stolper EM (1991) Degassing history of water, sulfur, and carbon in submarine lavas from Kilauea volcano. Hawaii J Geol 99:371–394Google Scholar
  15. Du Z, Foulger GR, Julian BR, Allen RM, Nolet G, Morgan WJ, Bergsson BH, Erlendsson P, Jakobsdottir S, Ragnarsson S, Stefansson R, Vogfjord K (2002) Crustal structure beneath western and eastern Iceland from surface waves and receiver functions. Geophys J Int 149:349–363CrossRefGoogle Scholar
  16. Edmonds M, Gerlach TM (2007) Vapor segregation and loss in basaltic melts. Geology 35:751–754CrossRefGoogle Scholar
  17. Einarsson P (1991) Earthquakes and present-day tectonism in Iceland. Tectonophysics 189:261–279CrossRefGoogle Scholar
  18. Einarsson P (2008) Plate boundaries, rifts and transforms in Iceland. Jökull 58:35–58Google Scholar
  19. Furman T, Frey FA, Park K-H (1991) Chemical constraints on the petrogenesis of mildly alkaline lavas from Vestmannaeyjar, Iceland: the Eldfell (1973) and Surtsey (1963–1967) eruptions. Conrib Mineral Petrol 109:19–37CrossRefGoogle Scholar
  20. Gaetani GA, Watson EB (2002) Modeling the major-element evolution of olivine-hosted melt inclusions. Chem Geol 183:25–41CrossRefGoogle Scholar
  21. Gaillard F, Scaillet B (2009) The sulfur content of volcanic gases on Mars. Earth Planet Sci Lett 279:34–43CrossRefGoogle Scholar
  22. Gaillard F, Schmidt B, Mackwell S, McCammon C (2003) Rate of hydrogen-iron redox exchange in silicate melts and glasses. Geochim Cosmochim Acta 67:2427–2441CrossRefGoogle Scholar
  23. Gaillard F, Scaillet B, Ardnt NT (2011) Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478:229–232CrossRefGoogle Scholar
  24. Gale A, Dalton CA, Langmuir CH, Su Y, Schilling J-G (2013) The mean composition of ocean ridge basalts. Geochem Geophys Geosyst 14:489–518CrossRefGoogle Scholar
  25. Gerlach TM (1980) Evaluation of volcanic gas analyses from Surtsey Volcano, Iceland, 1964–1967. J Volcanol Geotherm Res 8:191–198CrossRefGoogle Scholar
  26. Hartley ME, Maclennan J, Edmonds M, Thordarson T (2014) Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions. Earth Planet Sci Lett 393:120–131CrossRefGoogle Scholar
  27. Hartley ME, Neave DA, Maclennan J, Edmonds M, Thordarson T (2015) Diffusive over-hydration of olivine-hosted melt inclusions. Earth Planet Sci Lett 425:168–178CrossRefGoogle Scholar
  28. Hauri EH, Wang J, Dixon JE, King PL, Mandeville CW, Newman S (2002a) SIMS analysis of volatiles in silicate glasses 1. Calibration, matrix effects and comparisons with FTIR. Chem Geol 183:99–114CrossRefGoogle Scholar
  29. Hauri E, Gronvold K, Oskarsson N, McKenzie D (2002b) Abundance of carbon in the Icelandic mantle: constraints from melt inclusions. In: AGU Fall Meeting. San FranciscoGoogle Scholar
  30. Helo C, Longpré M-A, Shimizu N, Clague DA, Stix J (2011) Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas. Nat Geosci 4:260–263CrossRefGoogle Scholar
  31. Hémond C, Arndt NT, Lichtenstein U, Hofmann AW (1993) The heterogeneous Iceland plume : Nd-Sr-O Isotopes and trace element constraints. J Geophys Res 98:15833–15850CrossRefGoogle Scholar
  32. Hey RN, Höskuldsson Á, Driscoll N, Detrick R (2003) Marine Geophysical Investigations of Vestmannaeyjar and the Reykjanes Ridge, Iceland. In: American Geophysical Union Fall Meeting. San FranciscoGoogle Scholar
  33. Hey RN, Martinez F, Höskuldsson Á, Benediktsdóttir Á (2010) Propagating rift model for the V-shaped ridges south of Iceland. Geochem Geophys Geosyst 11:3CrossRefGoogle Scholar
  34. Iacono-Marziano G, Morizet Y, Le Trong E, Gaillard F (2012) New experimental data and semi-empirical parameterization of H2O-CO2 solubility in mafic melts. Geochim Cosmochim Acta 97:1–23CrossRefGoogle Scholar
  35. Jakobsson SP, Moore JG (1982) The Surtsey research drilling project of 1979. Surtsey Res Prog Rep IX:76–93Google Scholar
  36. Jakobsson SP, Jónasson K, Sigurdsson IA (2008) The three igneous rock series of Iceland. Jökull 58:117–138Google Scholar
  37. Jakobsson SP, Thors K, Vésteinsson ÁT, Ásbjörnsdóttir L (2009) Some aspects of the seafloor morphology at Surtsey volcano: the new multibeam bathymetric survey of 2007. Surtsey Res 12:9–20Google Scholar
  38. Jarosewich E, Nelen JA, Norberg JA (1980) Reference samples for electron microprobe analysis. Geostand Newslett 4:43–47CrossRefGoogle Scholar
  39. Kelley KA, Kingsley R, Schilling J-G (2013) Composition of plume-influenced mid-ocean ridge lavas and glasses from the Mid-Atlantic Ridge, East Pacific Rise, Galápagos Spreading Center, and Gulf of Aden. Geochem Geophys Geosyst 14:223–242CrossRefGoogle Scholar
  40. Kempton PD, Fitton JG, Saunders AD, Nowell GM, Taylor RN, Hardarson BS, Pearson G (2000) The Iceland plume in space and time: a Sr^Nd^Pb^Hf study of the North Atlantic rifted margin. Earth Planet Sci Lett 177:255–271CrossRefGoogle Scholar
  41. Kimura J-I, Chang Q (2012) Origin of the suppressed matrix effect for improved analytical performance in determination of major and trace elements in anhydrous silicate samples using 200 nm femtosecond laser ablation sector-field inductively coupled plasma mass spectrometry. J Anal At Spectrom 27:1549–1559CrossRefGoogle Scholar
  42. Kokelaar BP, Durant GP (1983) The petrology of basalts from Surtla (Surtsey), Iceland. J Volcanol Geotherm Res 19:247–253CrossRefGoogle Scholar
  43. Kokfelt TF, Hoernle K, Hauff F, Fiebig J, Werner R, Garbe-Schönberg D (2006) Combined trace element and Pb-Nd-Sr-O isotope evidence for recycled oceanic crust (upper and lower) in the Iceland mantle plume. J Petrol 47:1705–1749CrossRefGoogle Scholar
  44. Koornneef JM, Stracke A, Bourdon B, Meier MA, Jochum KP, Stoll B, Grönvold K (2012) Melting of a two-component source beneath Iceland. J Petrol 53:127–157CrossRefGoogle Scholar
  45. Lacasse C, Sigurdsson H, Carey SN, Johannesson H, Thomas LE, Rogers NW (2007) Bimodal volcanism at the katla subglacial caldera, Iceland: insights into the geochemistry and petrogenesis of rhyolitic magmas. Bull Volcanol 69:373–399CrossRefGoogle Scholar
  46. LaFemina PC, Dixon TH, Malservisi R, Árnadóttir T, Sturkell E, Sigmundsson F, Einarsson P (2005) Geodetic GPS measurements in south Iceland: Strain accumulation and partitioning in a propagating ridge system. J Geophys Res 110:B11405CrossRefGoogle Scholar
  47. Le Voyer M, Cottrell E, Kelley KA, Brounce M, Hauri EH (2015) The effect of primary versus secondary processes on the volatile content of MORB glasses: an example from the quatorial Mid-Atlantic Ridge (5°N-3°S). J Geophys Res Solid Earth 120:122–144CrossRefGoogle Scholar
  48. Lloyd AS, Plank T, Ruprecht P, Hauri EH, Rose W (2013) Volatile lossfrommelt inclusions in pyroclasts of differing sizes. Contrib Mineral Petrol 165:129–153CrossRefGoogle Scholar
  49. Lowenstern JB (2003) Melt inclusions come of age: volatiles, volcanoes, and Sorby’s legacy. In: De Vivo B, Bodnar RJ (eds) Developments in volcanology. Elsevier, p 1–21Google Scholar
  50. Macdonald GA, Katsura T (1964) Chemical composition of Hawaiian lavas. Mem Geol Soc Am 116:477–522CrossRefGoogle Scholar
  51. MacDonald R, McGarvie DW, Pinkerton H, Smith RL, Palacz ZA (1990) Petrogenetic evolution of the torfajoekull volcanic complex, Iceland: 1. Relationship between the magma types. J Petrol 31:429–459CrossRefGoogle Scholar
  52. MacLennan J (2008) Concurrent mixing and cooling of melts under Iceland. J Petrol 49:1931–1953CrossRefGoogle Scholar
  53. Manning CJ, Thirlwall MF (2014) Isotopic evidence for interaction between öraefajökull mantle and the eastern rift zone, Iceland. Contrib Mineral Petrol 167:959CrossRefGoogle Scholar
  54. Mattsson HB (2010) Textural variation in juvenile pyroclasts from an emergent, Surtseyan-type, volcanic eruption: The Capelas tuff cone, São Miguel (Azores). J Volcanol Geotherm Res 189:81–91CrossRefGoogle Scholar
  55. Mattsson HB, Höskuldsson Á (2003) Geology of the Heimaey volcanic centre, south Iceland: early evolution of a central volcano in a propagating rift? J Volcanol Geotherm Res 127:55–71CrossRefGoogle Scholar
  56. Mattsson HB, Oskarsson N (2005) Petrogenesis of alkaline basalts at the tip of a propagating rift: evidence from the Heimaey volcanic centre, south Iceland. J Volcanol Geotherm Res 147:245–267CrossRefGoogle Scholar
  57. Mcgarvie DW, Macdonald R, Pinkerton H, Smith RL (1990) Petrogenetic evolution of the torfajoekull volcanic complex, Iceland Ii. The role of magma mixing. J Petrol 31:461–481CrossRefGoogle Scholar
  58. Menke W, Brandsdóttir B, Einarsson P, Bjarnason IT (1996) Reinterpretation of the RRISP-77 Iceland shear-wave profiles. Geophys J Int 126:166–172CrossRefGoogle Scholar
  59. Métrich N, Zanon V, Créon L, Hildenbrand A, Meoreira M, Marques FO (2014) Is the ‘Azores Hotspot’ a wetspot? Insights from the geochemistry of fluid and melt inclusions in olivine of Pico basalts. J Petrol 55:377–393CrossRefGoogle Scholar
  60. Meyer PS, Sigurdsson H, Schilling J-G (1985) Petrological and geochemical variations along Iceland’s neovolcanic zones. J Geophys Res 90(B12):10043–10072CrossRefGoogle Scholar
  61. Michael PJ (1995) Regionally distinctive sources of depleted MORB: evidence from trace elements and H2O. Earth Planet Sci Lett 131:301–320CrossRefGoogle Scholar
  62. Moore LR, Gazel E, Tuohy R, Lloyd AS, Esposito R, Steele-MacInnis M, Hauri EH, Wallace PJ, Plank T, Bodnar RJ (2015) Bubbles matter: an assessment of the contribution of vapor bubbles to melt inclusion volatile budgets. Am Mineral 100:806–823CrossRefGoogle Scholar
  63. Moussallam Y, Oppenheimer C, Scaillet B, Gaillard F, Kyle P, Peters N, Hartley M, Berlo K, Donovan A (2014) Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing. Earth Planet Sci Lett 393:200–209CrossRefGoogle Scholar
  64. Murton BJ, Taylor RN, Thirlwall MF (2002) Plume-ridge interaction: a geochemical perspective from the Reykjanes Ridge. J Petrol 43:1987–2012CrossRefGoogle Scholar
  65. Neave DA, Maclennan J, Edmonds M, Thordarson T (2014) Melt mixing causes negative correlation of trace element enrichment and CO2 content prior to an Icelandic eruption. Earth Planet Sci Lett 400:272–283CrossRefGoogle Scholar
  66. Newman S, Lowenstern JB (2002) VolatileCalc: a silicate melt-H2O-CO2 solution model written in Visual Basic for excel. Comput Geosci 28:597–604CrossRefGoogle Scholar
  67. Nichols ARL, Macpherson CG, Wysoczanski RJ, Carroll MR (2009) Evidence for the presence of variably dehydrated recycled subducted oceanic lithosphere in sources along the Reykjanes Ridge and implications for the mantle water cycle. In: EGU General Assembly. ViennaGoogle Scholar
  68. O’Neill HSC, Mavrogenes JA (2002) The sulfide capacity and the sulfur content at sulfide saturation of silicate melts at 1400 °C and 1 bar. J Petrol 43:1049–1087CrossRefGoogle Scholar
  69. Oskarsson N, Steinthorsson S, Sigvaldson GE (1985) Iceland geochemical anomaly: origin, volcanotectonics, chemical fractionation and isotope evolution of the crust. J Geophys Res 90(B12):10011–10025CrossRefGoogle Scholar
  70. Passmore E, Maclennan J, Fitton JG, Thordarson T (2012) Mush disaggregation in basaltic magma chambers: evidence from the Ad 1783 laki eruption. J Petrol 53:2593–2623CrossRefGoogle Scholar
  71. Peate DW, Breddam K, Baker JA, Kurz MD, Barker AK, Prestvik T, Grassineau N, Skovgaard AC (2010) Compositional characteristics and spatial distribution of enriched Icelandic mantle components. J Petrol 51:1447–1475CrossRefGoogle Scholar
  72. Raczek I, Stoll B, Hofmann AW, Jochum KP (2001) High-precision trace element data for the USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, AGV-2, DTS-1, DTS-2, GSP-1 and GSP-2 by ID-TIMS and MIC-SSMS. Geostand Newslett 25:77–86CrossRefGoogle Scholar
  73. Riker J (2005) The 1859 eruption of Mauna Loa Volcano, Hawaii: controls on the development of long lava channels. In: University of OregonGoogle Scholar
  74. Roeder PL, Emslie RF (1970) Olivine-liquid equilibrium. Contrib Mineral Petrol 29:275–289CrossRefGoogle Scholar
  75. Saal AE, Hauri EH, Langmuir CH, Perfit MR (2002) Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419:451–455CrossRefGoogle Scholar
  76. Sato H (1977) Nickel content of basaltic magmas: identification of primary magmas and a measure of the degree of olivine fractionation. Lithos 10:113–120CrossRefGoogle Scholar
  77. Schilling J-G (1973) Iceland mantle plume: geochemical study of Reykjanes Ridge. Nature 242:565–571CrossRefGoogle Scholar
  78. Schipper CI, White JDL, Jakobsson SP, Palin JM, Bush-Marcinowski T (2015) The Surtsey magma series. Sci Rep 5:11498CrossRefGoogle Scholar
  79. Shorttle O, MacLennan J (2011) Compositional trends of Icelandic basalts: implications for short–length scale lithological heterogeneity in mantle plumes. Geochem Geophys Geosyst 12:Q11008CrossRefGoogle Scholar
  80. Sigvaldason GE (1974) Basalts from the centre of the assumed Icelandic mantle plume. J Petrol 15:497–524CrossRefGoogle Scholar
  81. Sigvaldason GE, Elísson G (1968) Collection and analysis of volcanic gases at Surtsey, Iceland. Geochim Cosmochim Acta 32:797–805CrossRefGoogle Scholar
  82. Sinton JM, Wilson DS, Christie DM, Hey RN, Delaney JR (1983) Petrologic consequences of rift propagation on oceanic spreading ridges. Earth Planet Sci Lett 62:193–207CrossRefGoogle Scholar
  83. Steinϸórsson S (1966) Petrography and chemistry. Surtsey Res Prog Rep II:77–85Google Scholar
  84. Sugawara T (2000) Empirical relationships between temperature, pressure, and MgO content in olivine and pyroxene saturated liquid. J Geophys Res 105(B4):8457–8472CrossRefGoogle Scholar
  85. Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc Spec Publ, p 313–345Google Scholar
  86. Thorarinsson S (1967) Surtsey: the new island in the north Atlantic. Viking, New York, p 47Google Scholar
  87. Thorarinsson S (1968) The Surtsey eruption: course of events during the year 1967. Surtsey Res Prog Rep 4:143–148Google Scholar
  88. Thorarinsson S, Einarsson T, Sigvaldason G, Elisson G (1964) The submarine eruption off the Vestmann islands 1963–64: a preliminary report. Bull Volcanol 27:435–445CrossRefGoogle Scholar
  89. Thordarson T (2000) Physical volcanology of lava flows on Surtsey, Iceland: a preliminary report. Surtsey Res Prog Rep 11:109–126Google Scholar
  90. Thordarson T, Höskuldsson Á (2008) Postglacial volcanism in Iceland. Jökull 58:197–228Google Scholar
  91. Thordarson T, Larsen G (2007) Volcanism in Iceland in historical time: volcano types, eruption styles and eruption history. J Geodyn 43:118–152CrossRefGoogle Scholar
  92. Thordarson T, Sigmarsson O (2009) Effusive activity in the 1963–67 Surtsey eruption, Iceland: flow emplacement and growth of small lava shields. In: al. Te (ed) Studies in volcanology: the legacy of george walker. Spec Pub IAVCEI, p 53–84Google Scholar
  93. Thordarson T, Miller DJ, Larsen G, Self S, Sigurdsson H (2001) New estimates of sulfur degassing and atmospheric mass-loading by the 934 AD Eldgjá eruption, Iceland. J Volcanol Geotherm Res 108:33–54CrossRefGoogle Scholar
  94. Toplis MJ (2005) The thermodynamics of iron and magnesium partitioning between olivine and liquid: criteria for assessing and predicting equilibrium in natural and experimental systems. Contrib Mineral Petrol 149:22–39CrossRefGoogle Scholar
  95. Wallace PJ, Kamenetsky VS, Cervantes P (2015) Melt inclusion CO2 contents, pressures of olivine crystallization, and the problem of shrinkage bubbles. Am Mineral 100:787–794CrossRefGoogle Scholar
  96. Zellmer GF, Rubin KH, Grönvold K, Jurado-Chichay Z (2008) On the recent bimodal magmatic processes and their rates in the torfajökull-veidivötn area, Iceland. Earth Planet Sci Lett 269:388–398CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • C. Ian Schipper
    • 1
    • 2
    Email author
  • Marion Le Voyer
    • 3
    • 4
  • Yves Moussallam
    • 5
  • James D. L. White
    • 6
  • Thor Thordarson
    • 7
  • Jun-Ichi Kimura
    • 2
  • Qing Chang
    • 2
  1. 1.School of Geography, Environment and Earth SciencesVictoria University of WellingtonWellingtonNew Zealand
  2. 2.Department of Solid Earth GeochemistryJapan Agency for Marine-Earth Science and TechnologyYokosukaJapan
  3. 3.Department of Terrestrial MagnetismCarnegie Institution of WashingtonWashingtonUSA
  4. 4.Department of GeologyUniversity of MarylandCollege ParkUSA
  5. 5.SCRIPPS Institution of OceanographyLa JollaUSA
  6. 6.Geology DepartmentUniversity of OtagoDunedinNew Zealand
  7. 7.Faculty and Institute of Earth SciencesUniversity of IcelandReykjavíkIceland

Personalised recommendations