Skip to main content

Advertisement

Log in

Birth of a lava lake: Nyamulagira volcano 2011–2015

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Since 1938, Nyamulagira volcano (Democratic Republic of Congo) has operated as a classic pressurized basaltic closed system, characterized by frequent dike-fed flank eruptions. However, on June 24, 2014, an active lava lake was observed in its summit, after a period of 76 years. The small lava lake is now exposed at the bottom of a pit-crater and is rising and growing. Based on satellite-derived infrared (IR) data, SO2 fluxes and periodic field surveys, we provide evidence that the development of the lava lake was gradual and occurred more than 2 years before it was first observed in the field. Notably, this process followed the voluminous 2011–2012 distal flank eruption and was coeval with weakening of the central rock column below the summit. Hence, the opening and development of the pit-crater favoured the continuous rise of fresh magma through the central conduit and promoted the gradual “re-birth” of the Nyamulagira lava lake. Budgeted volumes of magma erupted, and magma degassed at depth indicate that the formation of the lava lake is due to the draining and refilling of a shallow plumbing system (1–2 km depth), probably in response to the rift-parallel 2011–2012 distal eruption. We thus suggest that the transition from lateral to central activity did not result from a substantial change in the magma supply rate but, more likely, from the perturbation of the plumbing system (and related stress field) associated with the distal eruption. The processes observed at Nyamulagira are not unique and suggest that rift-fissure eruptions, in addition to triggering caldera collapses or lava lake drainages, may also induce a progressive resumption of central vent activity. Current activity at Nyamulagira represents a tangible and major hazard for the population living at the base of its southern flank.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albino F, Kervyn F, Smets B, d’Oreye N (2013) InSAR study on the 2011 eruption at Nyamulagira volcano, D.R.C: lava flow emplacement and post-eruption ground deformation. American Geophysical Union, Fall Meeting: 2013AGUFM.G31A0957A

  • Battaglia M, Di Bari M, Acocella V, Neri M (2011) Dike emplacement and flank instability at Mount Etna: constraints from a poro-elastic-model of flank collapse. J Volcanol Geotherm Res 199:153–164

    Article  Google Scholar 

  • Bluth GJS, Carn SA (2008) Exceptional sulfur degassing from Nyamuragira volcano, 1979–2005. Int J Remote Sens 29(22):6667–6685. doi:10.1080/01431160802168434

    Article  Google Scholar 

  • Bondo SF, Njovu CB, Nshokano JR, Lubula JL (2015) Some seismic aspect prior the November 06, 2011 Nyamulagira eruption, Democratic Republic of Congo. International Journal of Innovation and Applied Studies 10(2):753–766

    Google Scholar 

  • Burgi PY, Darrah TH, Tedesco D, Eymold WK (2014) Dynamics of the Mount Nyiragongo lava lake. J Geotherm Res 119(5):4016–4122

    Google Scholar 

  • Calvari S, Spampinato L, Lodato L, Harris AJL, Patrick MR, Dehn J, Burton MR, Andronico D (2005) Chronology and complex volcanic processes during the 2002–2003 flank eruption at Stromboli volcano (Italy) reconstructed from direct observations and surveys with a handheld thermal camera. J Geophys Res 110:B02201. doi:10.1029/2004JB003129

    Google Scholar 

  • Calvari S, Lodato L, Steffke A, Cristaldi A, Harris AJL, Spampinato L, Boschi E (2010) The 2007 Stromboli eruption: event chronology and effusion rates using thermal infrared data. J Geophys Res 115:B04201. doi:10.1029/2009JB006478

    Google Scholar 

  • Campion R (2014) New lava lake at Nyamuragira volcano revealed by combined ASTER and OMI SO2 measurements. Geophys Res Lett 41(21):7485–7492. doi:10.1002/2014GL061808

    Article  Google Scholar 

  • Campion R, Salerno GG, Coheur PF, Hurtmans D, Clarisse L, Kazahaya K, Burton M, Caltabiano T, Clerbaux C, Bernard A (2010) Measuring volcanic degassing of SO2 in the lower troposphere with ASTER band ratios. J Volcanol Geotherm Res 194(1):42–54. doi:10.1016/j.jvolgeores.2010.04.010

    Article  Google Scholar 

  • Campion R, Martinez-Cruz M, Lecocq T, Caudron C, Pacheco J, Pinardi G, Hermans C, Carn S, Bernard A (2012) Space-and ground-based measurements of sulfur dioxide emissions from Turrialba Volcano (Costa Rica). Bull Volcanol 74(7):1757–1770. doi:10.1007/s00445-012-0631-z

    Article  Google Scholar 

  • Coppola D, Cigolini C (2013) Thermal regimes and effusive trends at Nyamuragira volcano (DRC) from MODIS infrared data. Bull Volcanol 75(8):1–15

    Article  Google Scholar 

  • Coppola D, Laiolo M, Piscopo D, Cigolini C (2013) Rheological control on the radiant density of active lava flows and domes. J Volcanol Geotherm Res 249:39–48. doi:10.1016/j.jvolgeores.2012.09.005

    Article  Google Scholar 

  • Coppola D, Laiolo M, Cigolini C, Delle Donne D, Ripepe M (2015) Enhanced volcanic hot-spot detection using MODIS IR data: results from the MIROVA system. In: Harris AJL, De Groeve T, Garel F, Carn SA (eds) Detecting, modelling, and responding to effusive eruptions. Geological Society, London. doi:10.1144/SP426.5, Special Publications, 426, first published on May 14, 2015

    Google Scholar 

  • Field L, Barnie T, Blundy J, Brooker RA, Derek K, Lewi E, Saunders K (2012) Integrated field, satellite and petrological observations of the November 2010 eruption of Erta Ale. Bull Volcanol 74(10):2251–2271

    Article  Google Scholar 

  • Francis PW, Oppenheimer C, Stevenson D (1993) Endogenous growth of persistently active volcanoes. Nature 366:554–557

    Article  Google Scholar 

  • Geyer A, Folch A, Martì J (2006) Relationship between caldera collapse and magma chamber withdrawal: an experimental approach. J Volcanol Geotherm Res 157(4):375–386

    Article  Google Scholar 

  • Harris AJL, Flynn LP, Rothery DA, Oppenheimer C, Sherman SB (1999) Mass flux measurements at active lava lakes: implications for magma recycling. J Geophys Res 104(B4):7117–7136

    Article  Google Scholar 

  • Head EM, Shaw AM, Wallace PJ, Sims KWW, Carn S (2011) Insight into volatile behavior at Nyamuragira volcano (D.R. Congo, Africa) through olivine-hosted melt inclusions. Geochem Geophys Geosyst 12:Q0AB11. doi:10.1029/2011GC003699

    Article  Google Scholar 

  • Hirn A, Lépine J, Sapin M, Delorme H (1991) Episodes of pit-crater collapse documented by seismology at Piton de la Fournaise. J Volcanol Geotherm Res 47:89–104

    Article  Google Scholar 

  • Hoier R (1939) Contribution à l’étude de la morphologie du volcan Nyamuragira. Exploration du Parc National Albert: Institut des parcs nationaux du Congo Belge.

  • Kazahaya K, Shinohara H, Saito G (1994) Excessive degassing of Izu-Oshima volcano: magma convection in a conduit. Bull Volcanol 56:207–216

    Article  Google Scholar 

  • Kyambikwa Milungu A, Mavonga Tuluka G, Birimwiragi Namogo D, Etoy Osodundu M (2013) Analyse del l’activitè magmatique du volcan Nyamulagira par la mesure sismique des amplitudes à temps réel (RSAM) durant le période du Mars au 6 Novembre 2011. Book of Abstract, Active Volcanism & Continental Rifting, (AVCOR). International conference, Gisenyi, Rwanda, http://avcor2013.africamuseum.be/

    Google Scholar 

  • Lénat JF, Bachèlery P (1990) Structure and dynamics of the central zone of Piton de la Fournaise volcano. In: Lénat JF (ed) Le volcanisme de la Réunion, Monographie. Cent. De Rech. Volcanol, Clermont Ferrand, pp.257–296

  • Longpré MA, Staudacher T, Stix J (2007) The November 2002 eruption at Piton de la Fournaise volcano, La Réunion Island: ground deformation, seismicity, and pit-crater collapse. Bull Volcanol 69(5):511–525. doi:10.1007/s0044500600870

    Article  Google Scholar 

  • Mavonga T, Zana N, Durrheim RJ (2010) Studies of crustal structure, seismic precursors to volcanic eruptions and earthquake hazard in the eastern provinces of the Democratic Republic of Congo. Journal African Earth Sciences 58:623–633

    Article  Google Scholar 

  • Németh K, Cronin J (2008) Volcanic craters, pit-craters and high-level magma-feeding systems of mafic island-arc volcano: Ambrym, Vanuatu, South Pacific. In: Thomson K, Petford N (eds), Structure and Emplacement of High-Level Magmatic Systems. Geological Society 302:85–99, London, Special Publications

    Google Scholar 

  • Patrick M, Orr T, Sutton AJ, Elias T, Swanson D (2013) The first five years of Kilauea’s summit eruption in Halema’uma’u crater, 2008-2013. U.S. Geological Survey Fact Sheet 2013–3116. http://dx.doi.org/10.3133/fs20133116

  • Peltier A, Bachèlery P, Staudacher T (2009) Magma transport and storage at Piton de La Fournaise (La Réunion) between 1972 and 2007: a review of geophysical and geochemical data. J Volcanol Geotherm Res 184:93–108

    Article  Google Scholar 

  • Peltier A, Poland M, Staudacher T (2015) Are Piton de la Fournaise (La Réunion) and Kīlauea (Hawai’i) Really “Analog Volcanoes”?, in Hawaiian Volcanoes: From Source to Surface (eds R. Carey, V. Cayol, M. Poland and D. Weis), John Wiley & Sons, Inc, (ch 23), doi: 10.1002/9781118872079.

  • Poland MP, Sutton AJ, Gerlach TM (2009) Magma degassing triggered by static decompression at Kīlauea Volcano, Hawai‘i. Geophys Res Lett 36:L16306. doi:10.1029/2009GL039214

    Article  Google Scholar 

  • Poland MP, Miklius A, Montgomery-Brown EK (2014) Magma supply, storage, and transport at shield-stage Hawaiian volcanoes, in Characteristics of Hawaiian Volcanoes. (eds. Mp Poland, TJ Takahashi, CM Landowski), US Geological Survey Professional Paper 1801 (ch. 5)

  • Poppe S, Smets B, Albino F, Kervyn F, Kervyn M (2013) A new volcano-structural map of the Virunga Volcanic Province, D.R.Congo and Rwanda. EGU General Assembly 2013, 7-12 April, 2013. Abstract id: EGU2013-7131

  • Pouclet A (1975) Activités du Volcan Nyamuragira (rift ouest de l’Afrique centrale), évaluation des volumes de materiaux emis. Bull Volcanol 39(3):466–478

    Article  Google Scholar 

  • Ripepe M, Delle Donne D, Genco R, Maggio G, Pistolesi M, Marchetti E, Lacanna G, Ulivieri G, Poggi P (2015) Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption. Nat Commun 6:6998. doi:10.1038/ncomms7998

    Article  Google Scholar 

  • Rothery DA, Coppola D, Saunders C (2005) Analysis of volcanic activity patterns using MODIS thermal alerts. Bull Volcanol 67:539–556

    Article  Google Scholar 

  • Rymer H, Vay Wyk de Vries B, Stix J, Williams-Jones G (1998) Pit-crater structure and processes governing persistent activity at Masaya Volcano, Nicaragua. Bull Volcanol 59(5):345–355

    Article  Google Scholar 

  • Shinohara H (2008) Excess degassing from volcanoes and its role on eruptive and intrusive activity. Review of Geophysics 46(4):RG4005. doi:10.1029/2007RG000244

    Article  Google Scholar 

  • Smets B, Wauthier C, d’Oreye N (2010) A new map of the lava flow field of Nyamulagira (D.R. Congo) from satellite imagery. Journal African Earth Science 58(5):778–786

    Article  Google Scholar 

  • Smets B, D’Oreye N, Kervyn F (2014) Toward another lava lake in the Virunga Volcanic Field. Eos, Transactions American Geophysical Union 45:42. doi:10.1002/014EO420001

    Google Scholar 

  • Spampinato L, Ganci G, Hernandez PA, Calvo D, Tedesco D, Pérez NM, Calvari S, Del Negro C, Yalire MM (2013) Thermal insights into the dynamics of Nyiragongo lava lake from ground and satellite measurements. J Geophys Res 118(11):5771–5784

    Article  Google Scholar 

  • Tedesco T, Vaselli O, Papale P, Carn SA, Voltaggio M, Sawyer GR, Durieux J, Kasereka M, Tassi F (2007) The January 2002 volcano-tectonic eruption of Nyiragongo volcano, Democratic Republic of Congo. J Geophys Res 112:B09202. doi:10.1029/2006JB004762

    Google Scholar 

  • Toombs A, Wadge G (2012) Co-eruptive and inter-eruptive surface deformation measured by satellite radar interferometry at Nyamuragira volcano, D.R. Congo, 1996 to 2010. J Volcanol Geotherm Res 245–246:98–122. doi:10.1016/j.jvolgeores.2012.07.005

    Article  Google Scholar 

  • Verhoogen J (1939) Les volcans Virunga et 1’éruption du Nyamulagira de 1938 (note préliminaire). Ann Soc Géol Belg 62:326–353

    Google Scholar 

  • Villeneuve M (1980) La structure du Rift Africain dans la region du Lac Kivu (Zaire oriental). Bull Volcanol 43:541–551

    Article  Google Scholar 

  • Wadge G (1981) The variation of magma discharge during basaltic eruptions. J Volcanol Geotherm Res 11:139–168

    Article  Google Scholar 

  • Wadge G, Burt L (2011) Stress field control of eruption dynamics at a rift volcano: Nyamuragira, D.R. Congo. J Volcanol Geotherm Res 207:1–15. doi:10.1016/j.jvolgeores.2011.06.012

    Article  Google Scholar 

  • Wauthier C, Cayol V, Poland M, Kervyn F, D’Oreye N, Hooper A, Samsonov S, Tiampo K, Smets B (2013) Nyamulagira’s magma plumbing system inferred from 15 years of InSAR. In: Pyle DM, Mather TA, Biggs J (eds) Remote sensing of volcanoes and volcanic processes: integrating observation and modelling. Geological Society, London, p 380, Special Publications

    Google Scholar 

  • Wood DA, Zal HJ, Scholz CA, Ebinger CJ, Nizere I (2015) Evolution of the Kivu Rift, East Africa: interplay among tectonics, sedimentation and magmatism. Basin Research (on line first): doi: 10.1111/bre.12143

  • World Food Program (2010) Fighting hunger worldwide—The World Food Programme’s Year in Review, 2010. Available on line at: http://documents.wfp.org/stellent/groups/public/documents/communications/wfp236112.pdf

  • Wright R, Pilger E (2008) Radiant flux from Earth’s sub-aerially erupting volcanoes. Int J Remote Sens 29(22):6443–6466. doi:10.1080/01431160802168210

    Article  Google Scholar 

  • Yang K, Krotkov NA, Krueger AJ, Carn SA, Bhartia PK, Levelt PF (2007) Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: comparison and limitations. J Geophys Res 112(D24):D24S43. doi:10.1029/2007JD008825

    Google Scholar 

Download references

Acknowledgements

MIROVA is a collaborative project between the Universities of Turin and Florence (Italy) and is supported by the Centre for Volcanic Risk of the Italian Civil Protection Department. Additional funds were provided by MIUR; additional funds for improving our computing hardware were provided by Fondazione Cassa di Risparmio di Torino. We thank J.D.L. White, M. Patrick and two anonymous reviewers for their constructive comments that strongly improved this work. We are grateful to G. Wadge and L. Spaminato for their helpful suggestions on an early version of this manuscript. We acknowledge the LANCE-MODIS system (http://lance-modis.eosdis.nasa.gov/) for providing Level 1B MODIS data. Thanks to UN-MONUSCO flights, European Union-Kinshasa (DRC) and I.O.M. for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Coppola.

Additional information

Editorial responsibility: M.R. Patrick

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coppola, D., Campion, R., Laiolo, M. et al. Birth of a lava lake: Nyamulagira volcano 2011–2015. Bull Volcanol 78, 20 (2016). https://doi.org/10.1007/s00445-016-1014-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1014-7

Keywords

Navigation