Bulletin of Volcanology

, 78:15 | Cite as

On the transition from strombolian to fountaining activity: a thermal energy-based driver

  • Maxime Bombrun
  • Letizia Spampinato
  • Andrew Harris
  • Vincent Barra
  • Tommaso Caltabiano
Research Article

Abstract

Since 1999, Mount Etna’s (Italy) South-East crater system has been characterised by episodic lava fountaining. Each episode is characterised by initial strombolian activity followed by transition to sustained fountaining to feed high-effusion rate lava flow. Here, we use thermal infrared data recorded by a permanent radiometer station to characterise the transition to sustained fountaining fed by the New South-East crater that developed on the eastern flank of the South-East crater starting from January 2011. We cover eight fountaining episodes that occurred between 2012 and 2013. We first developed a routine to characterise event waveforms apparent in the precursory, strombolian phase. This allowed extraction of a database for thermal energy and waveform shape for 1934 events. We detected between 66 and 650 events per episode, with event durations being between 4 and 55 s. In total, 1508 (78 %) of the events had short waxing phases and dominant waning phases. Event frequency increased as climax was approached. Events had energies of between 3.0 × 106 and 5.8 × 109 J, with rank order analysis indicating the highest possible event energy of 8.1 × 109 J. To visualise the temporal evolution of retrieved parameters during the precursory phase, we applied a dimensionality reduction technique. Results show that weaker events occur during an onset period that forms a low-energy “sink”. The transition towards fountaining occurs at 107 J, where subsequent events have a temporal trend towards the highest energies, and where sustained fountaining occurs when energies exceed 109 J. Such an energy-based framework allows researchers to track the evolution of fountaining episodes and to predict the time at which sustained fountaining will begin.

Keywords

Mount Etna Strombolian events Lava fountaining Explosive regime transition Radiometry 

References

  1. Aksakal SK (2013) Geometric accuracy investigations of SEVIRI High-Resolution Visible (HRV) level 1.5 imagery. Remote Sens 5:2475–2491. doi:10.3390/rs5052475 CrossRefGoogle Scholar
  2. Allard P, Burton M, Murè F (2005) Spectroscopic evidence for a lava fountain driven by previously accumulated magmatic gas. Nature 433(7024):407–410. doi:10.1038/nature03246 CrossRefGoogle Scholar
  3. Aloisi M, D’Agostino M, Dean KG, Mostaccio A, Neri G (2002) Satellite analysis and PUFF simulation of the eruptive cloud generated by the Mount Etna paroxysm of 22 July 1998. J Geophys Res 107(B12):2373. doi:10.1029/2001JB000630 Google Scholar
  4. Andronico D, Cristaldi A, Scollo S (2008) The 4–5 September 2007 lava fountain at South-East Crater of Mt Etna, Italy. J Volcanol Geotherm Res 173:325–328. doi:10.1016/j.jvolgeores.2008.02.004 CrossRefGoogle Scholar
  5. Behncke B, Neri M, Pecora E, Zanon V (2006) The exceptional activity and growth of the Southeast Crater, Mount Etna (Italy), between 1996 and 2011. Bull Volcanol. doi:10.1007/s00445-006-0061-x Google Scholar
  6. Behncke B, Branca S, Corsaro RA, De Beni E, Miraglia L, Proietti C (2014) The 2011–2012 summit activity of Mount Etna: birth, growth and products of the new SE crater. J Volcanol Geotherm Res 270:10–21. doi:10.1016/j.jvolgeores.2013.11.012 CrossRefGoogle Scholar
  7. Bertrand C, Clerbaux N, Ipe A, Gonzalez L (2003) Estimation of the 2002 Mount Etna eruption cloud radiative forcing from Meteosat-7 data. Remote Sens Environ 87:257–272CrossRefGoogle Scholar
  8. Bertrand PR, Fhima M, Guillin A (2011) Off-line detection of multiple change points by the filtered derivative with p-value method. Seq Anal 30(2):172–207. doi:10.1080/07474946.2011.563710 CrossRefGoogle Scholar
  9. Bombrun M, Harris A, Gurioli L, Battaglia J, Barra V (2015a) Anatomy of a strombolian eruption: inferences from particle data recorded with thermal video. J Geophys Res 120(4):2367–2387. doi:10.1002/2014JB011556 CrossRefGoogle Scholar
  10. Bombrun M, Barra V, Harris A (2015b) Analysis of thermal video for coarse to fine particle tracking in volcanic explosion plumes. In Image Analysis (pp. 366–376). Springer International Publishing, doi: 10.1007/978-3-319-19665-7_30
  11. Bonaccorso A, Caltabiano T, Currenti G, Del Negro C, et al. (2011) Dynamics of a lava fountain revealed by geophysical, geochemical and thermal satellite measurements: The case of the 10 April 2011 Mt Etna eruption. Geophys Res Lett 38(24): doi:10.1029/2011GL049637
  12. Bonaccorso A, Calvari S, Currenti G, Del Negro C, Ganci G, Linde A, Napoli R, Sacks S, Sicali A (2013a) From source to surface: dynamics of Etna’s lava fountains investigated by continuous strain, magnetic, ground and satellite thermal data. Bull Volcanol 75 (690): doi:10.1007/s00445-013-0690-9
  13. Bonaccorso A, Currenti G, Linde A, Sacks S (2013b) New data from borehole strainmeters to infer lava fountain sources (Etna 2011–2012). Geophys Res Lett 40:3579–3584. doi:10.1002/grl.50692 CrossRefGoogle Scholar
  14. Branan YK, Harris A, Watson IM, Phillips JC, Horton K, Williams-Jones G, Garbeil H (2008) Investigation of at-vent dynamics and dilution using thermal infrared thermometers at Masaya Volcano, Nicaragua. J Volcanol Geotherm Res 169:34–47. doi:10.1016/j.jvolgeores.2007.07.021 CrossRefGoogle Scholar
  15. Calvari S, Salerno GG, Spampinato L, Gouhier M, La Spina A, Pecora E, Harris AJL, Labazuy P, Biale E, Boschi E (2011) An unloading foam model to constrain Etna’s 11–13 January 2011 lava fountaining episode. J Geophys Res 116:B11207. doi:10.1029/2011JB008407 CrossRefGoogle Scholar
  16. Cannata A, Montalto P, Privitera E, Russo G, Gresta S (2009) Tracking eruptive phenomena by infrasound: May 13, 2008 eruption at Mt. Etna. Geophys Res Lett 36:L05304. doi:10.1029/2008GL036738 CrossRefGoogle Scholar
  17. Gambino S, Cannata A, Cannavò F, La Spina A, Palano M, Sciotto M, Spampinato L, Barberi G 2016 The unusual December 28, 2014 dyke-fed paroxysm at Mt. Etna: timing and mechanism from a multidisciplinary perspective. J Geophys Res. In reviewGoogle Scholar
  18. Ganci G, Vicari A, Bonfiglio S, Gallo G, Del Negro C (2011) A text on-based cloud detection algorithm for MSG-SEVIRI multispectral images. Geomatics Nat Haz Risk 2:1–12. doi:10.1080/19475705.2011.578263 CrossRefGoogle Scholar
  19. Ganci G, Harris AJL, Del Negro C, Guéhenneux Y, Cappello A, Labazuy P, Calvari S, Gouhier M (2012) A year of lava fountaining at Etna: volumes from SEVIRI. Geophys Res Lett 39:L06305. doi:10.1029/2012GL051026 CrossRefGoogle Scholar
  20. Ganci G, James MR, Calvari S, Del Negro C (2013) Separating the thermal fingerprints of lava flows and simultaneous lava fountaining using ground-based thermal camera and SEVIRI measurements. Geophys Res Lett 40:5058–5063. doi:10.1002/grl.50983 CrossRefGoogle Scholar
  21. Gouhier M, Harris AJL, Calvari S, Labazuy P, Guéhenneux Y, Donnadieu F, Valade S (2012) Lava discharge during Etna’s January 2011 fire fountain tracked using MSG-SEVIRI. Bull Volcanol 74:787–793. doi:10.1007/s00445-011-0572-y CrossRefGoogle Scholar
  22. Greenland LP, Okamura AT, Stokes JB (1988) Constraints on the mechanisms of the eruption. US Geol Surv Prof Pap 1463:155–164Google Scholar
  23. Gurioli L, Colò L, Bollasina AJ, Harris AJL, Whittington A, Ripepe M (2014) Dynamics of strombolian explosions: inferences from field and laboratory studies of erupted bombs from Stromboli volcano. J Geophys Res: Solid Earth 119(1):319–345. doi:10.1002/2013JB010355 CrossRefGoogle Scholar
  24. Harris AJL, Neri M (2002) Volumetric observations during paroxysmal eruptions at Mount Etna: pressurized drainage of a shallow chamber or pulsed supply? J Volcanol Geotherm Res 116(1):79–95. doi:10.1016/S0377-0273(02)00212-3 CrossRefGoogle Scholar
  25. Harris AJL, Ripepe M (2007a) Synergy of multiple geophysical approaches to unravel explosive eruption conduit and source dynamics—a case study from Stromboli. Chem Erde 67:1–35. doi:10.1016/j.chemer.2007.01.003 CrossRefGoogle Scholar
  26. Harris A, Ripepe M (2007b) Temperature and dynamics of degassing at Stromboli. J Geophys Res 112:B03205. doi:10.1029/2006JB004393 Google Scholar
  27. Harris AJL, Stevens NF, Maciejewski AJH, Röllin PJ (1996) Thermal evidence for linked vents at Stromboli. Acta Vulcanol 8:57–62Google Scholar
  28. Harris A, Johnson J, Horton K, Garbeil G, Pirie D, Ramm H, Donegan S, Pilger E, Flynn L, Mouginis-Mark P, Ripepe M, Marchetti E, Rothery D (2003) Ground-based infrared monitoring provides new tool for remote tracking of volcanic activity. Eos 84(40):409–418CrossRefGoogle Scholar
  29. Harris A, Pirie D, Horton K, Garbeil H, Pilger E, Ramm H, Hoblitt R, Thornber C, Ripepe M, Marchetti E, Poggi P (2005) DUCKS: low cost thermal monitoring units for near-vent deployment. J Volcanol Geotherm Res 143:335–360. doi:10.1016/j.jvolgeores.2004.12.007 CrossRefGoogle Scholar
  30. Harris AJL, Ripepe M, Calvari S, Lodato L, Spampinato L (2008) The 5 April 2003 explosion of Stromboli: timing of eruption dynamics using thermal data. AGU Geophys Monograph 182:305–316. doi:10.1029/182GM25 Google Scholar
  31. Harris AJL, Valade S, Sawyer GM et al (2013a) Modern multispectral sensors help track explosive eruptions. Eos Trans Am Geophys Union 94(37):321–322. doi:10.1002/2013EO370001 CrossRefGoogle Scholar
  32. Harris AJL, Delle Donne D, Dehn J, Ripepe M, Worden K (2013b) Volcanic plume and bomb field masses from thermal infrared camera imagery. Earth Planet Sci Lett 365:77–85. doi:10.1016/j.epsl.2013.01.004 CrossRefGoogle Scholar
  33. Harris AJL (2013) Thermal remote sensing of active volcanoes: a user’s manual. Cambridge University Press. Cambridge, UK, 728 pCrossRefGoogle Scholar
  34. Heliker C, Mattox TN (2003) The first two decades of the Pu‘u‘Ō‘ō-Kūpaianaha eruption: chronology and selected bibliography. US Geol Surv Prof Pap 1676:1–27Google Scholar
  35. Hort M, Seyfried R, Voge M (2003) Radar Doppler velocimetry of volcanic eruptions: theoretical considerations and quantitative documentation of changes in eruptive behaviour at Stromboli volcano, Italy. Geophys J Int 154:515–532CrossRefGoogle Scholar
  36. Houghton BF, Gonnermann HM (2008) Basaltic explosive volcanism: constraints from deposits and models. Chem Erde 68:117–140. doi:10.1016/j.chemer.2008.04.002 CrossRefGoogle Scholar
  37. INGV-OE (2012) Bollettino settimanale sul monitoraggio vulcanico, geochimico e sismico del vulcano Etna: 27/02/2012 - 04/03/2012Google Scholar
  38. Johnson JB, Harris AJL, Sahetapy-Engel S, Wolf RE, Rose WI (2004) Explosion dynamics of vertically-directed pyroclastic eruptions at Santiaguito, Guatemala. Geophys Res Lett 31:L06610Google Scholar
  39. Johnson JB, Harris AJL, Hoblitt R (2005) Thermal observations of gas pistoning at Kilauea Volcano. J Geophys Res 110:B11201. doi:10.1029/2005JB003944 CrossRefGoogle Scholar
  40. Leduc L, Gurioli L, Harris A, Colò L, Rose-Koga EF (2015) Types and mechanisms of strombolian explosions: characterization of a gas-dominated explosion at Stromboli. Bull Volcanol 77(1):1–15. doi:10.1007/s00445-014-0888-5 CrossRefGoogle Scholar
  41. Marchetti E, Harris AJL (2008) Trends in activity at Pu'u 'O'o during 2001–2003: insights from the continuous thermal record. Geol Soc, London, Special Publication 307: 85–101 doi:10.1144/SP307.6
  42. Marchetti E, Ripepe M, Harris AJL, Delle Donne D (2009) Tracing the differences between Vulcanian and Strombolian explosions using infrasonic and thermal radiation energy. Earth Planet Sci Lett 279:273–281. doi:10.1016/j.epsl.2009.01.004 CrossRefGoogle Scholar
  43. Mercalli G (1907) I vulcani attivi della Terra. Ulrico Hoepli (Milano): 422 pGoogle Scholar
  44. Murè F, Larocca G, Spampinato L, Caltabiano T, Salerno GG, Montalto P, Scuderi L (2013) Installazione di un radiometronell'area sommitale delvulcano Etna. Rapporti Tecnici INGVGoogle Scholar
  45. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238. doi:10.1029/JC087iC02p01231 CrossRefGoogle Scholar
  46. Oliveira MCF, Levkowitz H (2003) From visual data exploration to visual data mining: a survey. IEEE Trans Vis Comput Graph 9(3):378–394. doi:10.1109/TVCG.2003.1207445 CrossRefGoogle Scholar
  47. Patrick MR, Harris AJL, Ripepe M, Dehn J, Rothery DA, Calvari S (2007) Strombolian explosive styles and source conditions: insights from thermal (FLIR) video. Bull Volcanol 69(7):769–784. doi:10.1007/s00445-006-0107-0 CrossRefGoogle Scholar
  48. Patrick MR (2007) Dynamics of strombolian ash plumes from thermal video: motion, morphology, and air entrainment. J Geophys Res 112(B6): doi:10.1029/2006JB004387
  49. Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geotherm Res 134:77–107CrossRefGoogle Scholar
  50. Parfitt EA, Wilson L (1995) Explosive volcanic eruptions. IX: the transition between Hawaiian-style lava fountaining and strombolian explosive activity. Geophys J Int 121:226–232CrossRefGoogle Scholar
  51. Parfitt EA, Wilson L, Neal CA (1995) Factors influencing the height of Hawaiian lava fountains: implications for the use of fountain height as an indicator of magma gas content. Bull Volcanol 57:440–450CrossRefGoogle Scholar
  52. Pioli L, Rosi M, Calvari S, Spampinato L, Renzulli A, Di Roberto A (2008) The eruptive activity of 28 and 29 December 2002. Am Geophys Union Monog 182:105–116. doi:10.1029/182GM10 Google Scholar
  53. Pioli L, Bonadonna C, Azzopardi BJ, Phillips JC, Ripepe M (2012) Experimental constraints on the outgassing dynamics of basaltic magmas. J Geophys Res 117:B03204. doi:10.1029/2011JB008392 Google Scholar
  54. Polacci M, Corsaro RA, Andronico D (2006) Coupled textural and compositional characterization of basaltic scoria: insights into the transition from strombolian to fire fountain activity at Mount Etna, Italy. Geology 34:201–204. doi:10.1130/G22318.1 CrossRefGoogle Scholar
  55. Pyle DM (1998) Forecasting sizes and repose times of future extreme volcanic events. Geology 26(4):367–370. doi:10.1130/0091-7613 CrossRefGoogle Scholar
  56. Ramsey MS, Harris AJL (2013) Volcanology 2020: how will thermal remote sensing of volcanic surface activity evolve over next decade? J Volcanol Geotherm Res 249:217–233. doi:10.1016/j.jvolgeores.2012.05.011 CrossRefGoogle Scholar
  57. Ripepe M, Harris AJL (2008) Dynamics of the 5 April 2003 explosive paroxysm observed at Stromboli by a near-vent thermal, seismic and infrasonic array. Geophys Res Lett 35:L07306. doi:10.1029/2007GL032533 CrossRefGoogle Scholar
  58. Ripepe M, Harris AJL, Carniel R (2002) Thermal, seismic and infrasonic evidences of variable degassing rates at Stromboli volcano. J Volcanol Geotherm Res 118:285–207. doi:10.1016/S0377-0273(02)00298-6 CrossRefGoogle Scholar
  59. Ripepe M, Marchetti E, Poggi P, Harris AJL, Fiaschi A, Ulivieri G (2004) Seismic, acoustic, and thermal network monitors the 2003 eruption of Stromboli volcano. Eos 85(35):329–332. doi:10.1029/2004EO350001 CrossRefGoogle Scholar
  60. Ripepe M, Harris AJL, Marchetti M (2005) Coupled thermal oscillations in explosive activity at different craters of Stromboli volcano. Geophys Res Lett 32:L17302. doi:10.1029/2005GL022711 CrossRefGoogle Scholar
  61. Ripepe M, Delle Donne D, Harris A, Marchetti M, Ulivieri G (2008) Dynamics of strombolian activity. AGU Geophys Monog 182:39–48. doi:10.1029/182GM05 Google Scholar
  62. Rosi M, Bertagnini A, Harris AJL, Pioli L, Pistolesi M, Ripepe M (2006) A case history of paroxysmal explosion at Stromboli: timing and dynamics of the April 5, 2003 event. Earth Planet Sci Lett 243:594–606CrossRefGoogle Scholar
  63. Sahetapy-Engel ST, Harris AJL, Marchetti E (2008) Thermal, seismic and infrasound observations of persistent explosive activity and conduit dynamics at Santiaguito Lava Dome, Guatemala. J Volcanol Geotherm Res 173:1–14. doi:10.1016/j.jvolgeores.2007.11.026 CrossRefGoogle Scholar
  64. Savitzky A, Golay MJ (1964) Smoothing and differentiation of data by simplified least squares procedures. Anal Chem 36(8):1627–1639. doi:10.1021/ac60214a047 CrossRefGoogle Scholar
  65. Sciotto M, Rowe CA, Cannata A, Arrowsmith S, Privitera E, Gresta S (2011) Investigation of volcanic seismo-acoustic signals: applying subspace detection to lava fountain activity at Etna Volcano. AGU Fall Meet Abstracts 1:2685Google Scholar
  66. Shimozuru D (1971) Observation of volcanic eruption by an infrared radiation meter. Nature 234:457–459. doi:10.1038/234457a0 CrossRefGoogle Scholar
  67. Spampinato L, Calvari S, Oppenheimer C, Lodato L (2008) Shallow magma transport for the 2002–3 Mt Etna eruption inferred from thermal infrared surveys. J Volcanol Geotherm Res 177:301–312CrossRefGoogle Scholar
  68. Spampinato L, Oppenheimer C, Cannata A, Montalto P, Salerno GG, Calvari S (2012) On the time-scale of thermal cycles associated with open-vent degassing. Bull Volcanol 74(6):1281–1292. doi:10.1007/s00445-012-0592-2 CrossRefGoogle Scholar
  69. Spampinato L, Sciotto M, Cannata A, Cannavò F et al (2015) Multi‐parametric study of the February–April 2013 paroxysmal phase of Mt. Etna. New South‐East crater, Geochemistry, Geophysics, Geosystems. doi:10.1002/2015GC005795 Google Scholar
  70. Stovall WK, Houghton BF, Gonnermann H, Fagents SA, Swanson DA (2010) Eruption dynamics of Hawaiian-style fountains: the case study of episode 1 of the Kilauea Iki 1959 eruption. Bull Volcanol. doi:10.1007/s00445-010-0426-z Google Scholar
  71. Swanson DA, Duffield WA, Jackson DB, Peterson DB (1979) Chronological narrative of the 1969–1971 Mauna Ulu eruption of Kilauea volcano, Hawaii. US Geol Surv Prof Pap 1056:1–59Google Scholar
  72. Van der Maaten L, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605Google Scholar
  73. Vergniolle S, Gaudemer Y (2012) Decadal evolution of a degassing magma reservoir unravelled from fire fountains produced at Etna volcano (Italy) between 1989 and 2001. Bull Volcanol 74(3):725–742. doi:10.1007/s00445-011-0563-z CrossRefGoogle Scholar
  74. Vergniolle S, Mangan M (2000) Hawaiian and strombolian eruptions. In: Sigurdsson H. (ed.), Encyclopedia of Volcanoes (Academic Press): p. 447–461Google Scholar
  75. Vergniolle S, Ripepe M (2008) From strombolian explosions to fire fountains at Etna Volcano (Italy): what do we learn from acoustic measurements? Geological Society London Special Publication 307: 103–124 doi:10.1144/SP307.7
  76. Ulivieri G, Ripepe M, Marchetti E (2013) Infrasound reveals transition to oscillatory discharge regime during lava fountaining: implication for early warning. Geophys Res Lett 40:3008–3013. doi:10.1002/grl.50592 CrossRefGoogle Scholar
  77. Wolff JA, Sumner JM (2000) Lava fountains and their products. In: Sigurdson, H. (ed.), Encyclopedia of Volcanoes (Academic Press): pp 321–329Google Scholar
  78. Wolfe EW, Neal CA, Banks NG, Duggan TJ (1988) Geologic observations and chronology of eruptive events. US Geol Surv Prof Pap 1463:1–97Google Scholar
  79. Zettwoog P, Tazieff H (1972) Instrumentation for measuring and recording mass and energy transfer from volcanoes to atmosphere. Bull Volcanol 36(1):1–19. doi:10.1007/BF02596979 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Maxime Bombrun
    • 1
    • 2
    • 3
    • 4
  • Letizia Spampinato
    • 5
  • Andrew Harris
    • 1
    • 2
  • Vincent Barra
    • 3
    • 4
  • Tommaso Caltabiano
    • 5
  1. 1.Clermont-Université, Université Blaise Pascal, LMVClermont-FerrandFrance
  2. 2.CNRS, UMR 6524, LMVAubiereFrance
  3. 3.Clermont-Université, Université Blaise Pascal, LIMOSClermont-FerrandFrance
  4. 4.CNRS, UMR 6158, LIMOSAubiereFrance
  5. 5.Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, Osservatorio EtneoCataniaItaly

Personalised recommendations