Skip to main content
Log in

Vesiculation and fragmentation history in a submarine scoria cone-forming eruption, an example from Nishiizu (Izu Peninsula, Japan)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

An uplifted, >50-m-thick, half-dissected, submarine-emplaced (below wave-base) scoria cone occurs as dipping beds in coastal outcrops at Nishiizu, on the Izu Peninsula in Japan. Concentrically outward-dipping, weakly stratified, ungraded, framework-supported thin-to-very thick beds consist of brown coarse tuff to scoria lapilli-tuff, with outsized fluidal bombs throughout; accessory lithic clasts chiefly occur in the lowermost visible beds. Scoria bombs have quenched margins, weak bread-crust textures and their vesicle number densities decrease inward, which is indicative of fast surface cooling. Composite textures in the scoria bombs indicate recycling and agglutination of quenched and semi-molten pyroclasts at the submarine vent. In contrast to weak concentric gradations in vesicle size distribution in the bombs, lapilli have asymmetrical gradients in vesicle size distribution, indicating that they are fragments of coarser, quenched lumps. Three grain-size modes characterise the Nishiizu brown scoria, with coarse magma lumps ejected during magmatic fragmentation and quench-jointed upon contact with seawater, to be subsequently fragmented into lapilli and coarse ash by various styles of fragmentation where seawater plays a critical role. The cone was constructed by slow-moving fallout-fed granular flow/creep, fed directly by suspension settling focused at the crater rim but extending onto the cone flanks, with only minor resedimentation by granular flows. Nishiizu deposits yield an exceptional record of eruption and sedimentation dynamics during submarine cone-building activity, and in this study we compare their vesiculation and fragmentation mechanisms with those of potential subaerial analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alfano F, Bonadonna C, Gurioli L (2012) Insights into eruption dynamics from textural analysis: the case of the May, 2008, Chaitén eruption. Bull Volcanol 74:2095–2108

    Article  Google Scholar 

  • Allen SR, McPhie J (2000) Water-settling and resedimentation of submarine rhyolitic pumice at Yali, eastern Aegean, Greece. J Volcanol Geotherm Res 95:285–307

    Article  Google Scholar 

  • Allen SR, McPhie J (2009) Products of neptunian eruptions. Geology 37:639–642. doi:10.1130/G30007A.1

    Article  Google Scholar 

  • Allen RL, Lundström I, Ripa M, Simeonov A, Christofferson H (1996) Facies analysis of a 1.9 Ga, continental margin, back-arc, felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen Region, Sweden. Econ Geol 91:979–1006

    Article  Google Scholar 

  • Allen SR, Fiske RS, Cashman KV (2008) Quenching of steam-charged pumice; implications for submarine pyroclastic volcanism. Earth Planet Sci Lett 274:40–49. doi:10.1016/j.epsl.2008.06.050

    Article  Google Scholar 

  • Allen SR, Fiske RS, Tamura Y (2010) Effects of water depth on pumice formation in submarine domes at Sumisu, Izu-Bonin Arc, western Pacific. Geology 38:391–394. doi:10.1130/G30500.1

    Article  Google Scholar 

  • Allen SR, Freundt A, Kurokawa K (2012) Characteristics of submarine pumice-rich density current deposits sourced from turbulent mixing of subaerial pyroclastic flows at the shoreline: field and experimental assessment. Bull Volcanol 74:657–675. doi:10.1007/s00445-011-0553-1

    Article  Google Scholar 

  • Batiza R, Fornari DJ, Vanko DA, Lonsdale P (1984) Craters, calderas, and hyaloclastites on young Pacific seamounts. J Geophys Res 89:8371–8390. doi:10.1029/JB089iB10p08371

    Article  Google Scholar 

  • Busby-Spera CJ (1986) Depositional features of rhyolitic and andesitic volcaniclastic rocks of the Mineral King submarine caldera complex, Sierra Nevada, California. J Volcanol Geotherm Res 27:43–76

    Article  Google Scholar 

  • Cantelli A, Johnson S, White JDL, Parker G (2008) Sediment sorting in the deposits of turbidity currents created by experimental modeling of explosive subaqueous eruptions. J Geol 116:76–93

    Article  Google Scholar 

  • Carey RJ, Houghton BF, Thordarson T (2009) Abrupt shifts between wet and dry phases of the 1875 eruption of Askja Volcano: microscopic evidence for macroscopic dynamics. J Volcanol Geotherm Res 184:256–270

    Article  Google Scholar 

  • Carey RJ, Manga M, Degruyter W, Swanson D, Houghton B, Orr T, Patrick M (2012) Externally triggered renewed bubble nucleation in basaltic magma: The 12 October 2008 eruption at Halema‘uma‘u Overlook vent, Kīlauea, Hawai‘i, USA. J Geophys Res 117. doi:10.1029/2012jb009496

  • Carey RJ, Wysoczanski R, Wunderman R, Jutzeler M (2014) Discovery of the largest historic silicic submarine eruption. Eos Trans AGU 95:157–159. doi:10.1002/2014EO190001

    Article  Google Scholar 

  • Cas RAF, Yamagishi H, Moore L, Scutter C (2003) Miocene submarine fire fountain deposits, Ryugazaki Headland, Oshoro Peninsula, Hokkaido, Japan: implications for submarine fountain dynamics and fragmentation processes. In: White JDL, Smellie JL, Clague DA (eds) Explosive subaqueous volcanism. AGU, Washington, D.C., pp 299–316

    Chapter  Google Scholar 

  • Cashman KV, Fiske RS (1991) Fallout of pyroclastic debris from submarine volcanic eruptions. Science 253:275–280. doi:10.1126/science.253.5017.275

    Article  Google Scholar 

  • Cashman KV, Mangan MT (1994) Physical aspects of magmatic degassing; II, Constraints on vesiculation processes from textural studies of eruptive products. Rev Mineral 30:447–478

    Google Scholar 

  • Chadwick JWW, Cashman KV, Embley RW, Matsumoto H, Dziak RP, de Ronde CEJ, Lau TK, Deardorff ND, Merle SG (2008) Direct video and hydrophone observations of submarine explosive eruptions at NW Rota-1 volcano, Mariana arc. J Geophys Res, [Solid Earth Planets] 113:B08S10. doi:10.1029/2007JB005215

  • Coppola D, Piscopo D, Staudacher T, Cigolini C (2009) Lava discharge rate and effusive pattern at Piton de la Fournaise from MODIS data. J Volcanol Geotherm Res 184:174–192. doi:10.1016/j.jvolgeores.2008.11.031

    Article  Google Scholar 

  • Deardorff ND, Cashman KV, Chadwick WW (2011) Observations of eruptive plume dynamics and pyroclastic deposits from submarine explosive eruptions at NW Rota-1, Mariana arc. J Volcanol Geotherm Res 202:47–59. doi:10.1016/j.jvolgeores.2011.01.003

    Article  Google Scholar 

  • Doucet P, Mueller W, Chartrand F (1994) Archean, deep-marine, volcanic eruptive products associated with the Coniagas massive sulfide deposit, Quebec, Canada. Can J Earth Sci 31:1569–1584

    Article  Google Scholar 

  • Fisher RV (1968) Puu Hou littoral cones, Hawaii. Geol Rundsch 57:837–864. doi:10.1007/BF01845368

    Article  Google Scholar 

  • Fisher RV, Schmincke H-U (1984) Pyroclastic rocks. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Fiske RS (1969) Recognition and significance of pumice in marine pyroclastic rocks. Geol Soc Am Bull 80:1–8. doi:10.1130/0016-7606(1969)80[1:RASOPI]2.0.CO;2

    Article  Google Scholar 

  • Fiske RS, Matsuda T (1964) Submarine equivalents of ash flows Tokiwa Formation Japan. Am J Sci 262:76–106

    Article  Google Scholar 

  • Fiske RS, Naka J, Iizasa K, Yuasa M, Klaus A (2001) Submarine silicic caldera at the front of the Izu-Bonin Arc, Japan: voluminous seafloor eruptions of rhyolite pumice. Geol Soc Am Bull 113:813–824

    Article  Google Scholar 

  • Folk RL (1980) Petrology of sedimentary rocks. Hemphill Publ. Co., Austin

    Google Scholar 

  • Fujibayashi N, Sakai U (2003) Vesiculation and eruption processes of submarine effusive and explosive rocks from the middle Miocene Ogi Basalt, Sado Island, Japan. In: White JDL, Smellie JL, Clague DA (eds) Explosive Subaqueous Volcanism. AGU, Washington, D.C., pp 259–272

    Chapter  Google Scholar 

  • Fujibayashi N, Asakura K, Hattori T, Allen S (2014) Pillow lava and spasmodic submarine fire fountaining in the middle Miocene marginal basin, Sado Island, Japan. Island Arc 23:344–364. doi:10.1111/iar.12091

    Article  Google Scholar 

  • Gardner JE, Thomas RME, Jaupart C, Tait S (1996) Fragmentation of magma during Plinian volcanic eruptions. Bull Volcanol 58:144–162. doi:10.1007/s004450050132

    Article  Google Scholar 

  • Geological Survey of Japan (2010) Seamless digital geological map of Japan 1:200,000. In: AIST GSJ (ed) Research Information Database DB084. Geol. Surv. Jpn. AIST, Japan

  • Giachetti T, Druitt TH, Burgisser A, Arbaret L, Galven C (2010) Bubble nucleation, growth and coalescence during the 1997 Vulcanian explosions of Soufrière Hills Volcano, Montserrat. J Volcanol Geotherm Res 193:215–231

    Article  Google Scholar 

  • Gill J, Torssander P, Lapierre H, Taylor R, Kaiho K, Koyama M, Kusakabe M, Aitchison J, Cisowski S, Dadey K, Fujioka K, Klaus A, Lovell M, Marsaglia K, Pezard P, Taylor B, Tazaki K (1990) Explosive deep water basalt in the sumisu backarc rift. Science 248:1214–1217

    Article  Google Scholar 

  • Gonnermann HM, Manga M (2003) Explosive volcanism may not be an inevitable consequence of magma fragmentation. Nature 426:432–435

    Article  Google Scholar 

  • Gordee SM, McPhie J, Allen SR (2008) Facies mapping of volcanic and sedimentary facies of a partly extrusive submarine cryptodome, Mio-Pliocene Shirahama Group, Izu Peninsula, Japan. In: IAVCEI General Assembly, Iceland

  • Gurioli L, Houghton BF, Cashman KV, Cioni R (2005) Complex changes in eruption dynamics during the 79 AD eruption of Vesuvius. Bull Volcanol 67:144–159

    Article  Google Scholar 

  • Gurioli L, Harris AJL, Houghton BF, Polacci M, Ripepe M (2008) Textural and geophysical characterization of explosive basaltic activity at Villarrica volcano. J Geophys Res, [Solid Earth Planets] 113. doi:10.1029/2007jb005328

  • Head JW III, Wilson L (1989) Basaltic pyroclastic eruptions: Influence of gas-release patterns and volume fluxes on fountain structure, and the formation of cinder cones, spatter cones, rootless flows, lava ponds and lava flows. J Volcanol Geotherm Res 37:261–271

    Article  Google Scholar 

  • Head JW, Wilson L (2003) Deep submarine pyroclastic eruptions: theory and predicted landforms and deposits. J Volcanol Geotherm Res 121:155–193

    Article  Google Scholar 

  • Houghton BF, Gonnermann HM (2008) Basaltic explosive volcanism: constraints from deposits and models. Chem Erde 68:117–140. doi:10.1016/j.chemer.2008.04.002

    Article  Google Scholar 

  • Houghton BF, Hackett WR (1984) Strombolian and phreatomagmatic deposits of Ohakune craters, Ruapehu, New Zealand: a complex interaction between external water and rising basaltic magma. J Volcanol Geotherm Res 21:207–231

    Article  Google Scholar 

  • Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462

    Article  Google Scholar 

  • Houghton BF, Carey RJ, Cashman KV, Wilson CJN, Hobden BJ, Hammer JE (2010) Diverse patterns of ascent, degassing, and eruption of rhyolite magma during the 1.8ka Taupo eruption, New Zealand: evidence from clast vesicularity. J Volcanol Geotherm Res 195:31–47

    Article  Google Scholar 

  • Ibaraki M (1981) Geologic ages of “Lepidocyclina” and Miogypsina horizons in Japan as determined by planktonic foraminifera. In: Ikebe N, Chiji M, Tsuchi R, Morozumi Y, Kawata T (eds) IGCP-114; International workshop on Pacific Neogene biostratigraphy; 6th international working group meeting, Osaka, Japan, Nov 25–29, 1981. Osaka Mus. Nat. Hist., Osaka, Japan (JPN), p 118–119

  • Jutzeler M, Proussevitch AA, Allen SR (2012) Grain-size distribution of volcaniclastic rocks 1: a new technique based on functional stereology. J Volcanol Geotherm Res 239–240:1–11. doi:10.1016/j.jvolgeores.2012.05.013

    Article  Google Scholar 

  • Jutzeler M, Manga M, White JDL (2014a) Facies analysis and floatation experiments from an unusual bed of pumice lapilli-and-ash offshore Montserrat (IODP 340). BSRG annual meeting, Nottingham

    Google Scholar 

  • Jutzeler M, McPhie J, Allen SR (2014b) Submarine eruption-fed and resedimented pumice-rich facies: the Dogashima Formation (Izu Peninsula, Japan). Bull Volcanol 76:1–29. doi:10.1007/s00445-014-0867-x

  • Jutzeler M, McPhie J, Allen SR (2015a) Explosive destruction of a Pliocene hot lava dome underwater: Dogashima (Japan). J Volcanol Geotherm Res 304:75–81. doi:10.1016/j.jvolgeores.2015.08.009

  • Jutzeler M, McPhie J, Allen SR, Proussevitch AA (2015b) Grain-size distribution of volcaniclastic rocks 2: characterizing grain size and hydraulic sorting. J Volcanol Geotherm Res 301:191–203. doi:10.1016/j.jvolgeores.2015.05.019

    Article  Google Scholar 

  • Kaneko T, Yasuda A, Shimano T, Nakada S, Fujii T, Kanazawa T, Nishizawa A, Matsumoto Y (2005) Submarine flank eruption preceding caldera subsidence during the 2000 eruption of Miyakejima Volcano, Japan. Bull Volcanol 67:243–253

    Article  Google Scholar 

  • Kano K-I (1983) Structures of submarine andesitic volcano—an example in the Neogene Shirahama group in the southern part of the Izu Peninsula, Japan. Geosci Rep Shizuoka Univ 8:9–37

    Google Scholar 

  • Kano K-I (1989) Interactions between andesitic magma and poorly consolidated sediments: examples in the Neogene Shirahama Group, South Izu, Japan. J Volcanol Geotherm Res 37:59–75

    Article  Google Scholar 

  • Kano K (1996) A Miocene coarse volcaniclastic mass-flow deposit in the Shimane Peninsula, SW Japan: product of a deep submarine eruption? Bull Volcanol 58:131–143. doi:10.1007/s004450050131

    Article  Google Scholar 

  • Kano K (2003) Subaqueous pumice eruptions and their products: a review. In: White JDL, Smellie JL, Clague DA (eds) Explosive subaqueous volcanism. AGU, Washington, D.C., pp 213–230

    Chapter  Google Scholar 

  • Kato Y (1987) Woody pumice generated with submarine eruption. Chishitsugaku Zasshi. J Geol Soc Jpn 93:11–20

    Article  Google Scholar 

  • Kauahikaua J, Sherrod DR, Cashman KV, Heliker C, Hon K, Mattox TN, Johnson JA (2003) Hawaiian lava-flow dynamics during the Pu’u ‘O’o-Ku paianaha eruption: A tale of two decades. US Geol Surv Prof Pap:63–87

  • Kelly J, Carey S, Pistolesi M, Rosi M, Croff-Bell K, Roman C, Marani M (2014) Exploration of the 1891 Foerstner submarine vent site (Pantelleria, Italy): insights into the formation of basaltic balloons. Bull Volcanol 76:1–18. doi:10.1007/s00445-014-0844-4

    Google Scholar 

  • Klug C, Cashman KV (1994) Vesiculation of May 18, 1980. Mount St. Helens magma. Geology 22:468–472

    Article  Google Scholar 

  • Klug C, Cashman K, Bacon C (2002) Structure and physical characteristics of pumice from the climactic eruption of Mount Mazama (Crater Lake), Oregon. Bull Volcanol 64:486–501

    Article  Google Scholar 

  • Kodaira S, Sato T, Takahashi N, Miura S, Tamura Y, Tatsumi Y, Kaneda Y (2007) New seismological constraints on growth of continental crust in the Izu-Bonin intra-oceanic arc. Geology 35:1031–1034. doi:10.1130/g23901a.1

    Article  Google Scholar 

  • Kueppers U, Nichols ARL, Zanon V, Potuzak M, Pacheco JMR (2012) Lava balloons—peculiar products of basaltic submarine eruptions. Bull Volcanol 74:1379–1393. doi:10.1007/s00445-012-0597-x

    Article  Google Scholar 

  • Lautze NC, Houghton BF (2007) Linking variable explosion style and magma textures during 2002 at Stromboli volcano, Italy. Bull Volcanol 69:445–460. doi:10.1007/s00445-006-0086-1

    Article  Google Scholar 

  • Lefebvre NS, White JDL, Kjarsgaard BA (2013) Unbedded diatreme deposits reveal maar-diatreme-forming eruptive processes: Standing Rocks West, Hopi Buttes, Navajo Nation, USA. Bull Volcanol 75. doi:10.1007/s00445-013-0739-9

  • Lonsdale P, Batiza R (1980) Hyaloclastite and lava flows on young seamounts examined with a submersible. Geol Soc Am Bull 91:I 545–I 554

    Article  Google Scholar 

  • Lowe DR (1982) Sediment gravity flows: II. Depositional models with special reference to the deposits of high-density turbidity currents. J Sediment Petrol 52:279–297

    Google Scholar 

  • Maicher D (2003) A cluster of surtseyan volcanoes at Lookout Bluff, north Otago, New Zealand: aspects of edifice spacing and time. In: White JDL, Smellie JL, Clague DA (eds) Explosive subaqueous volcanism. AGU, Washington, D.C., pp 167–178

    Chapter  Google Scholar 

  • Manga M, Patel A, Dufek J (2011) Rounding of pumice clasts during transport: field measurements and laboratory studies. Bull Volcanol 73:321–333. doi:10.1007/s00445-010-0411-6

    Article  Google Scholar 

  • Mangan MT, Cashman KV, Newman S (1993) Vesiculation of basaltic magma during eruption. Geology 21:157–160

    Article  Google Scholar 

  • Manville V, Wilson CJN (2004) Vertical density currents: a review of their potential role in the deposition and interpretation of deep-sea ash layers. JGeol Soc (London, U K) 161:947–958. doi:10.1144/0016-764903-067

    Article  Google Scholar 

  • Mastin LG, Christiansen RL, Thornber C, Lowenstern J, Beeson M (2004) What makes hydromagmatic eruptions violent? Some insights from the Keanakako’i Ash, Kilauea Volcano, Hawai’i. J Volcanol Geotherm Res 137:15–31. doi:10.1016/j.jvolgeores.2004.05.015

    Article  Google Scholar 

  • Mattox TN, Mangan MT (1997) Littoral hydrovolcanic explosions: a case study of lava-seawater interaction at Kilauea Volcano. J Volcanol Geotherm Res 75:1–17

    Article  Google Scholar 

  • Mattsson HB (2010) Textural variation in juvenile pyroclasts from an emergent, Surtseyan-type, volcanic eruption; the Capelas tuff cone, Sao Miguel (Azores). J Volcanol Geotherm Res 189:81–91. doi:10.1016/j.jvolgeores.2009.10.007

    Article  Google Scholar 

  • McGetchin TR, Settle M, Chouet BA (1974) Cinder cone growth modeled after Northeast Crater, Mount Etna, Sicily. J Geophys Res 79:3257–3272. doi:10.1029/JB079i023p03257

    Article  Google Scholar 

  • McPhie J, Allen RL (2003) Submarine, silicic, syn-eruptive pyroclastic units in the Mount Read Volcanics, western Tasmania: influence of vent setting and proximity on lithofacies characteristics. In: White JDL, Smellie JL, Clague DA (eds) Explosive subaqueous volcanism. AGU, Washington, D.C., pp 245–258

    Chapter  Google Scholar 

  • McPhie J, Doyle M, Allen R (1993) Volcanic Textures. ARC- Centre of Excellence in Ore Deposits University of Tasmania, Hobart

    Google Scholar 

  • Mueller WU (2003) A subaqueous eruption model for shallow-water, small volume eruptions; evidence from two Precambrian examples. In: White JDL, Smellie JL, Clague DA (eds) Explosive subaqueous volcanism. AGU, Washington, D.C., pp 189–204

    Chapter  Google Scholar 

  • Mueller W, White JDL (1992) Felsic fire-fountaining beneath Archean seas: pyroclastic deposits of the 2730 Ma Hunter Mine Group, Quebec, Canada. J Volcanol Geotherm Res 54:117–134

    Article  Google Scholar 

  • Mueller W, Rocheleau M, Donaldson JA (1992) Archaean sedimentation controlled by tectonomagmatic processes; two examples from the Abitibi greenstone belt, Quebec, Canada. In: Glover JE, Ho SE (eds) Publication - Geology Department and Extension Service, University of Western Australia. pp 247–263

  • Mulder T, Alexander J (2001) The physical character of subaqueous sedimentary density flow and their deposits. Sedimentology 48:269–299. doi:10.1046/j.1365-3091.2001.00360.x

    Article  Google Scholar 

  • Murtagh RM (2011) An investigation into the explosivity of shallow subaqueous basaltic eruptions. University of Otago

  • Murtagh RM, White JDL (2013) Pyroclast characteristics of a subaqueous to emergent Surtseyan eruption, Black Point Volcano, California. J Volcanol Geotherm Res 267:75–91. doi:10.1016/j.jvolgeores.2013.08.015

    Article  Google Scholar 

  • Murtagh RM, White JDL, Sohn YK (2011) Pyroclast textures of the Ilchulbong ‘wet’ tuff cone, Jeju Island, South Korea. J Volcanol Geotherm Res 201:385–396. doi:10.1016/j.jvolgeores.2010.09.009

    Article  Google Scholar 

  • Parcheta CE, Houghton BF, Swanson DA (2012) Hawaiian fissure fountains 1: decoding deposits-episode 1 of the 1969–1974 Mauna Ulu eruption. Bull Volcanol 74:1729–1743. doi:10.1007/s00445-012-0621-1

    Article  Google Scholar 

  • Parcheta CE, Houghton BF, Swanson DA (2013) Contrasting patterns of vesiculation in low, intermediate, and high Hawaiian fountains: a case study of the 1969 Mauna Ulu eruption. J Volcanol Geotherm Res 255:79–89. doi:10.1016/j.jvolgeores.2013.01.016

    Article  Google Scholar 

  • Parfitt EA (2004) A discussion of the mechanisms of explosive basaltic eruptions. J Volcanol Geotherm Res 134:77–107

    Article  Google Scholar 

  • Parfitt EA, Wilson L (1995) Explosive volcanic eruptions—IX. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophys J Int 121:226–232

    Article  Google Scholar 

  • Pioli L, Erlund E, Johnson E, Cashman K, Wallace P, Rosi M, Delgado Granados H (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Parícutin Volcano 1943–1952 (Mexico). Earth Planet Sci Lett 271:359–368

    Article  Google Scholar 

  • Piper DJW, Normark WR (2009) Processes that initiate turbidity currents and their influence on turbidites: a marine geology perspective. J Sediment Res 79:347–362. doi:10.2110/isr.2009.046

    Article  Google Scholar 

  • Polacci M, Pioli L, Rosi M (2003) The Plinian phase of the Campanian Ignimbrite eruption (Phlegrean Fields, Italy): evidence from density measurements and textural characterization of pumice. Bull Volcanol 65:418–432. doi:10.1007/s00445-002-0268-4

    Article  Google Scholar 

  • Polacci M, Corsaro RA, Andronico D (2006) Coupled textural and compositional characterization of basaltic scoria: insights into the transition from Strombolian to fire fountain activity at Mount Etna, Italy. Geology 34:201–204. doi:10.1130/G22318.1

    Article  Google Scholar 

  • Potuzak M, Nichols ARL, Dingwell DB, Clague DA (2008) Hyperquenched volcanic glass from Loihi Seamount, Hawaii. Earth Planet Sci Lett 270:54–62

    Article  Google Scholar 

  • Proussevitch AA, Sahagian DL, Carlson WD (2007a) Statistical analysis of bubble and crystal size distributions: application to Colorado Plateau basalts. J Volcanol Geotherm Res 164:112–126. doi:10.1016/j.jvolgeores.2007.04.006

    Article  Google Scholar 

  • Proussevitch AA, Sahagian DL, Tsentalovich EP (2007b) Statistical analysis of bubble and crystal size distributions: formulations and procedures. J Volcanol Geotherm Res 164:95–111. doi:10.1016/j.jvolgeores.2007.04.007

    Article  Google Scholar 

  • Rosseel JB, White JDL, Houghton BF (2006) Complex bombs of phreatomagmatic eruptions: Role of agglomeration and welding in vents of the 1886 Rotomahana eruption, Tarawera, New Zealand. J Geophys Res, [Solid Earth Planets] 111. doi:10.1029/2005JB004073

  • Rotella MD, Wilson CJN, Barker SJ, Cashman KV, Houghton BF, Wright IC (2014) Bubble development in explosive silicic eruptions: insights from pyroclast vesicularity textures from Raoul volcano (Kermadec arc). Bull Volcanol 76:1–24. doi:10.1007/s00445-014-0826-6

    Google Scholar 

  • Rotella MD, Wilson CJN, Barker SJ, Ian Schipper C, Wright IC, Wysoczanski RJ (2015) Dynamics of deep submarine silicic explosive eruptions in the Kermadec arc, as reflected in pumice vesicularity textures. J Volcanol Geotherm Res 301:314–332. doi:10.1016/j.jvolgeores.2015.05.021

    Article  Google Scholar 

  • Rubin KH, Soule SA, Chadwick WW Jr, Fornari DJ, Clague DA, Embley RW, Baker ET, Perfit MR, Caress DW, Dziak RP (2012) Volcanic eruptions in the deep sea. Oceanography 25:142–157

    Article  Google Scholar 

  • Sable JE, Houghton BF, Wilson CJN, Carey RJ (2006a) Complex proximal sedimentation from Plinian plumes: the example of Tarawera 1886. Bull Volcanol 69:89–103

    Article  Google Scholar 

  • Sable JE, Houghton BF, Del Carlo P, Coltelli M (2006b) Changing conditions of magma ascent and fragmentation during the Etna 122 BC basaltic plinian eruption: evidence from clast microtextures. J Volcanol Geotherm Res 158:333–354. doi:10.1016/j.jvolgeores.2006.07.006

    Article  Google Scholar 

  • Sable JE, Houghton BF, Wilson CJN, Carey RJ (2009) Eruption mechanisms during the climax of the Tarawera 1886 basaltic plinian eruption inferred from microtextural characteristics of the deposits. 2:129–154

  • Sahagian DL, Proussevitch AA (1998) 3D particle size distributions from 2D observations: stereology for natural applications. J Volcanol Geotherm Res 84:173–196. doi:10.1016/S0377-0273(98)00043-2

    Article  Google Scholar 

  • Sarda P, Graham D (1990) Mid-ocean ridge popping rocks: implications for degassing at ridge crests. Earth Planet Sci Lett 97:268–289. doi:10.1016/0012-821X(90)90047-2

    Article  Google Scholar 

  • Schipper CI, White JDL (2010) No depth limit to hydrovolcanic limu o Pele: analysis of limu from Lō’ihi Seamount, Hawai’i. Bull Volcanol 72:1–16. doi:10.1007/s00445-009-0315-5

    Article  Google Scholar 

  • Schipper CI, White JDL, Houghton BF, Shimizu N, Stewart RB (2010a) Explosive submarine eruptions driven by volatile-coupled degassing at Lō’ihi Seamount, Hawai’i. Earth Planet Sci Lett 295:497–510

    Article  Google Scholar 

  • Schipper CI, White JD, Houghton BF, Shimizu N, Stewart RB (2010b) “Poseidic” explosive eruptions at Loihi Seamount, Hawaii. Geology 38:291–294

    Article  Google Scholar 

  • Schipper CI, White JDL, Houghton BF (2010c) Syn- and post-fragmentation textures in submarine pyroclasts from Lō’ihi Seamount, Hawai. J Volcanol Geotherm Res 191:93–106

    Article  Google Scholar 

  • Schipper CI, White JDL, Houghton BF (2011) Textural, geochemical, and volatile evidence for a strombolian-like eruption sequence at Lṓihi seamount, Hawaíi. J Volcanol Geotherm Res 207:16–32. doi:10.1016/j.jvolgeores.2011.08.001

    Article  Google Scholar 

  • Schipper CI, Sonder I, Schmid A, White JDL, Duerig T, Zimanowski B, Buettner R (2013) Vapour dynamics during magma-water interaction experiments: hydromagmatic origins of submarine volcaniclastic particles (limu O Pele). Geophys J Int 192:1109–1115. doi:10.1093/gji/ggs099

    Article  Google Scholar 

  • Shea T, Houghton BF, Gurioli L, Cashman KV, Hammer JE, Hobden BJ (2010) Textural studies of vesicles in volcanic rocks: an integrated methodology. J Volcanol Geotherm Res 190:271–289. doi:10.1016/j.jvolgeores.2009.12.003

    Article  Google Scholar 

  • Shea T, Gurioli L, Houghton BF (2012) Transitions between fall phases and pyroclastic density currents during the AD 79 eruption at Vesuvius: building a transient conduit model from the textural and volatile record. Bull Volcanol 74:2363–2381

    Article  Google Scholar 

  • Shimano T, Nakada S (2006) Vesiculation path of ascending magma in the 1983 and the 2000 eruptions of Miyakejima volcano, Japan. Bull Volcanol 68:549–566. doi:10.1007/s00445-005-0029-2

    Article  Google Scholar 

  • Simpson K, McPhie J (2001) Fluidal-clast breccia generated by submarine fire fountaining, Trooper Creek Formation, Queensland, Australia. J Volcanol Geotherm Res 109:339–355. doi:10.1016/S0377-0273(01)00199-8

    Article  Google Scholar 

  • Sohn YK, Chough SK (1993) The Udo tuff cone, Cheju Island, South Korea: transformation of pyroclastic fall into debris fall and grain flow on a steep volcanic cone slope. Sedimentology 40:769–786

    Article  Google Scholar 

  • Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas: a review and analysis. J Volcanol Geotherm Res 3:1–37

    Article  Google Scholar 

  • Stewart AL, McPhie J (2004) An Upper Pliocene coarse pumice breccia generated by a shallow submarine explosive eruption, Milos, Greece. Bull Volcanol 66:15–28

    Article  Google Scholar 

  • Stovall WK, Houghton BF, Gonnermann H, Fagents SA, Swanson DA (2011) Eruption dynamics of Hawaiian-style fountains: the case study of episode 1 of the Kilauea Iki 1959 eruption. Bull Volcanol 73:511–529. doi:10.1007/s00445-010-0426-z

    Article  Google Scholar 

  • Stovall WK, Houghton BF, Hammer JE, Fagents SA, Swanson DA (2012) Vesiculation of high fountaining Hawaiian eruptions: episodes 15 and 16 of 1959 Kilauea Iki. Bull Volcanol 74:441–455. doi:10.1007/s00445-011-0531-7

    Article  Google Scholar 

  • Sumner JM, Blake S, Matela RJ, Wolff JA (2005) Spatter. J Volcanol Geotherm Res 142:49–65

    Article  Google Scholar 

  • Talling PJ, Masson DG, Sumner EJ, Malgesini G (2012) Subaqueous sediment density flows: depositional processes and deposit types. Sedimentology 59:1937–2003. doi:10.1111/j.1365-3091.2012.01353.x

    Article  Google Scholar 

  • Tamura Y (1990) Mode of emplacement and petrogenesis of volcanic rocks of the Shirahama Group, Izu Peninsula, Japan. Ph.D. thesis, University of Tokyo, Japan

  • Tamura Y (1994) Genesis of island arc magmas by mantle-derived bimodal magmatism: evidence from the Shirahama Group, Japan. J Petrol 35:619–645. doi:10.1093/petrology/35.3.619

    Article  Google Scholar 

  • Tamura Y, Koyama M, Fiske RS (1991) Paleomagnetic evidence for hot pyroclastic debris flow in the shallow submarine Shirahama Group (Upper Miocene-Pliocene), Japan. J Geophys Res 96:21779–21787. doi:10.1029/91JB02258

    Article  Google Scholar 

  • Tani K, Fiske RS, Dunkely DJ, Ishizuka O, Oikawa T, Isobe I, Tatsumi Y (2011) The Izu Peninsula, Japan: zircon geochronology reveals a record of intra-oceanic rear-arc magmatism in an accreted block of Izu-Bonin crust. Earth Planet Sci Lett. doi:10.1016/j.epsl.2010.12.052

    Google Scholar 

  • Taylor B (1992) Rifting and the volcanic-tectonic evolution of the Izu-Bonin-Mariana Arc. Proc Ocean Drill Program Sci Results 126:627–652

    Google Scholar 

  • Vergniolle S, Mangan M (2000) Hawaiian and strombolian eruptions. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, San Diego

    Google Scholar 

  • Walker GPL (1971) Grain-size characteristics of pyroclastic deposits. J Geol 79:696–714

    Article  Google Scholar 

  • Walker GPL (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rundsch 62:431–446. doi:10.1007/BF01840108

    Article  Google Scholar 

  • Walker GPL, Croasdale R (1971) Characteristics of some basaltic pyroclastics. Bull Volcanol 35:303–317

    Article  Google Scholar 

  • Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392

    Article  Google Scholar 

  • White JDL (1996) Pre-emergent construction of a lacustrine basaltic volcano, Pahvant Butte, Utah (USA). Bull Volcanol 58:249–262

    Article  Google Scholar 

  • White JDL (2000) Subaqueous eruption-fed density currents and their deposits. Precambrian Res 101:87–109. doi:10.1016/S0301-9268(99)00096-0

    Article  Google Scholar 

  • White JDL, Houghton BF (2006) Primary volcaniclastic rocks. Geology 34:677–680. doi:10.1130/G22346.1

    Article  Google Scholar 

  • White JDL, Ross PS (2011) Maar-diatreme volcanoes: a review. J Volcanol Geotherm Res 201:1–29. doi:10.1016/j.jvolgeores.2011.01.010

    Article  Google Scholar 

  • White JDL, Smellie JL, Clague DA (2003) Introduction: a deductive outline and topical overview of subaqueous explosive volcanism. In: White JDL, Smellie JL, Clague DA (eds) Explosive subaqueous volcanism. AGU, Washington, D.C., pp 1–23

    Chapter  Google Scholar 

  • Wright IC, Gamble JA, Shane PAR (2003) Submarine silicic volcanism of the Healy caldera, southern Kermadec arc (SW Pacific): I—volcanology and eruption mechanisms. Bull Volcanol 65:15–29

    Google Scholar 

  • Yamada E, Sakaguchi K (1987) Stratigraphy and geological structure of the Neogene formations, southwestern part of the Izu Peninsula, Japan. Chishitsu Chosajo Geppo. Bull Geol Surv Jpn 38:357–383

    Google Scholar 

  • Yamagishi H (1982) Miocene subaqueous volcanoclastic rocks of the Oshoro Peninsula, South West Hokkaido, Japan. Chishitsugaku Zasshi. J Geol Soc Jpn 88:19–29

    Article  Google Scholar 

  • Yamagishi H (1994) Subaqueous volcanic rocks, atlas and glossary. Hokkaido University Press, Japan

    Google Scholar 

  • Yuasa M, Kano K (2003) Submarine silicic calderas on the northern Shichito-Iwojima Ridge, Izu-Ogasawara (Bonin) Arc, western Pacific. In: White JDL, Smellie JL, Clague DA (eds) Explosive subaqueous volcanism. AGU, Washington, D.C., pp 231–244

    Chapter  Google Scholar 

Download references

Acknowledgments

We thank M. Manga and R.J. Carey for commenting on an earlier version of the manuscript and J. Sable for providing additional data on Tarawera. T. Shea and K. Kano provided constructive, insightful reviews. M.J. acknowledges the Swiss National Science Foundation for its financial support with the scholarship PBSKP2_138556 and J.D.L.W for a U. Otago Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Jutzeler.

Additional information

Editorial responsibility: S. Self, Acting Executive Editor

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 4341 kb)

ESM 2

(XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jutzeler, M., White, J.D.L., Proussevitch, A.A. et al. Vesiculation and fragmentation history in a submarine scoria cone-forming eruption, an example from Nishiizu (Izu Peninsula, Japan). Bull Volcanol 78, 7 (2016). https://doi.org/10.1007/s00445-016-0999-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-0999-2

Keywords

Navigation