Bulletin of Volcanology

, 77:107 | Cite as

Tephrochronology of the southernmost Andean Southern Volcanic Zone, Chile

  • D. J. Weller
  • C. G. Miranda
  • P. I. Moreno
  • R. Villa-Martínez
  • C. R. SternEmail author
Research Article


Correlations among and identification of the source volcanoes for over 60 Late Glacial and Holocene tephras preserved in eight lacustrine sediment cores taken from small lakes near Coyhaique, Chile (46° S), were made based on the stratigraphic position of the tephra in the cores, lithostratigraphic data (tephra layer thickness and grain size), and tephra petrochemistry (glass color and morphology, phenocryst phases, and bulk-tephra trace element contents determined by ICP-MS). The cores preserve a record of explosive eruptions, since ∼17,800 calibrated years before present (cal years BP), of the volcanoes of the southernmost Andean Southern Volcanic Zone (SSVZ). The suggested source volcanoes for 55 of these tephras include Hudson (32 events), Mentolat (10 events), and either Macá or Cay or some of the many minor monogenetic eruptive centers (MECs; 13 events) in the area. Only four of these eruptions had been previously identified in tephra outcrops in the region, indicating the value of lake cores for identifying smaller eruptions in tephrochronologic studies. The tephra records preserved in these lake cores, combined with those in marine cores, which extend these records back to 20,000 cal years BP, prior to the Last Glacial Maximum, suggest that no significant temporal change in the frequency of explosive eruptions was associated with deglaciation. Over this time period, Hudson volcano, one of the largest and longest lived volcanoes in the Southern Andes, has had >55 eruptions (four of them were very large) and has produced >45 km3 of pyroclastic material, making it also one of the most active volcanoes in the SVZ in terms of both frequency and volume of explosive eruptions.


Andean volcanism Tephra Tephrochronology Hudson volcano Chile 



We thank M. Kaplan, M. Fletcher, I. Vilanova, W. Henriquez, and E. Simi for their assistance in the field in obtaining the cores. This research was supported by Fondecyt (Chile) grant no. 1121141, the Institute of Ecology and Biodiversity grants ICM P05-002 and PFB-23, and the Department of Geological Sciences, CU-Boulder. We would also like to thank the Nightingale and Weller families for their continued support. S. Watt, S. Kuehn, and an unidentified reviewer provide many helpful comments on an early version of this manuscript.

Supplementary material

445_2015_991_Fig11_ESM.jpg (9.7 mb)
Fig. S1

(JPG 9982 kb)

445_2015_991_Fig12_ESM.jpg (2 mb)
Fig. S2

(JPG 2092 kb)

445_2015_991_Fig13_ESM.jpg (2 mb)
Fig. S3

(JPG 2046 kb)

445_2015_991_Fig14_ESM.jpg (1.8 mb)
Fig. S4

(JPG 1816 kb)

445_2015_991_Fig15_ESM.jpg (2.1 mb)
Fig. S5

(JPG 2110 kb)

445_2015_991_Fig16_ESM.jpg (2.2 mb)
Fig. S6

(JPG 2278 kb)

445_2015_991_Fig17_ESM.jpg (2.5 mb)
Fig. S7

(JPG 2566 kb)

445_2015_991_Fig18_ESM.jpg (2.3 mb)
Fig. S8

(JPG 2372 kb)

445_2015_991_MOESM1_ESM.xlsx (12 kb)
Table S1 (XLSX 12 kb)
445_2015_991_MOESM2_ESM.xlsx (23 kb)
Table S2 (XLSX 23 kb)
445_2015_991_MOESM3_ESM.xlsx (29 kb)
Table S3 (XLSX 28 kb)
445_2015_991_MOESM4_ESM.xlsx (24 kb)
Table S4 (XLSX 24 kb)
445_2015_991_MOESM5_ESM.xlsx (30 kb)
Table S5 (XLSX 29 kb)
445_2015_991_MOESM6_ESM.xlsx (26 kb)
Table S6 (XLSX 25 kb)
445_2015_991_MOESM7_ESM.xlsx (28 kb)
Table S7 (XLSX 28 kb)
445_2015_991_MOESM8_ESM.xlsx (37 kb)
Table S8 (XLSX 36 kb)
445_2015_991_MOESM9_ESM.xlsx (36 kb)
Table S9 (XLSX 36 kb)
445_2015_991_MOESM10_ESM.xlsx (34 kb)
Table S10 (XLSX 34 kb)
445_2015_991_MOESM11_ESM.xlsx (14 kb)
Table S11 (XLSX 14 kb)


  1. Bertrand S, Araneda A, Vargas P, Jana P, Fagel N, Urrutia R (2012) Using the N/C ratio to correct bulk radiocarbon ages from lake sediments: insights from Chilean Patagonia. Quat Geochron 12:23–29CrossRefGoogle Scholar
  2. Bertrand S, Daga R, Bedert R, Fontijn K (2014) Deposition of the 2011-2012 Cordon Caulle tephra (Chile, 40°S) in lake sediments: implications for tephrochronology and volcanology. J Geophys Res 119:2555–2573CrossRefGoogle Scholar
  3. Best JL (1992) Sedimentology and event timing of a catastrophic volcaniclastic mass flow, Volcán Hudson, Southern Chile. Bull Volcanol 54:299–318CrossRefGoogle Scholar
  4. Björck S, Rundgren M, Ljung K, Unkel I, Wallin A (2012) Multi-proxy analyses of a peat bog on Isla de los Estados, easternmost Tierra del Fuego: a unique record of the variable Southern Hemisphere Westerlies since the last deglaciation. Quat Sci Rev 42:1–14CrossRefGoogle Scholar
  5. Cande SC, Leslie RB (1986) Late Cenozoic tectonics of the Southern Chile Trench. J Geophys Res 91(B1):471–496CrossRefGoogle Scholar
  6. Carel M, Siani G, Delpech G (2011) Tephrostratigraphy of a deep-sea sediment sequence off the south Chilean margin: new insight into the Hudson volcanic activity since the last glacial period. J Volcanol Geotherm Res 208:99–111CrossRefGoogle Scholar
  7. Cembrano J, Hervé F, Lavenu A (1996) The Liquiñe-Ofqui Fault Zone: long-lived intra-arc fault system in Southern Chile. Tectonophys 259:55–66CrossRefGoogle Scholar
  8. D’Orazio M, Innocenti F, Manetti P, Tamponi M, Tonarini S, González-Ferrán O, Lahsen A (2003) The Quaternary calc-alkaline volcanism of the Patagonian Andes close to the Chile triple junction: geochemistry and petrogenesis of volcanic rocks from the Cay and Maca volcanoes (∼45°S, Chile). J S Amer Earth Sci 16(4):219–242CrossRefGoogle Scholar
  9. de Porras ME, Maldonado A, Abarzúa AM, Cárdenas ML, Francois JP, Martel-Cea A, Stern CR (2012) Postglacial vegetation, fire and climate dynamics at Central Chilean Patagonia (Lake Shaman, 44°S). Quat Sci Revs 50:71–85CrossRefGoogle Scholar
  10. de Porras ME, Maldonado A, Quintana FA, Martel-Cea JO, Reyes O, Méndez C (2014) Environmental and climatic changes in Central Chilean Patagonia since the Late Glacial (Mallín El Embudo, 44°S). Climates of the Past 10:1063–1078CrossRefGoogle Scholar
  11. Elbert J, Wartenburg R, von Gunten L, Urrutia R, Fisher D, Fujak M, Hamann Y, Greber ND, Grosjean M (2013) Late Holocene air temperature variability reconstructed from the sediments of Laguna Escondida, Patagonia Chile. Palaeogeog Palaeoclimat Palaeoecol 396:482–492CrossRefGoogle Scholar
  12. Fontijn K, Lachowycz SM, Rawson H, Pyle DM, Mather TA, Naranjo JA, Moreno-Roa H (2014) Late Quaternary tephrostratigraphy of Southern Chile and Argentina. Quat Sci Revs 89:70–84CrossRefGoogle Scholar
  13. Futa K, Stern CR (1988) Sr and Nd isotopic and trace element compositions of Quaternary volcanic centers of the Southern Andes. Earth Planet Sci Lett 88:253–262CrossRefGoogle Scholar
  14. Gonzáles-Ferrán O (1994) Volcanes de Chile. Instituto Geografico Militar, Santiago, 640 p Google Scholar
  15. Gutiérrez F, Gioncada A, González-Ferrán O, Lahsen A, Mazzuoli R (2005) The Hudson volcano and surrounding monogenetic centres (Chilean Patagonia): an example of volcanism associated with ridge-trench collision environment. J Volcanol Geotherm Res 145:207–233CrossRefGoogle Scholar
  16. Haberle SG, Lumley SH (1998) Age and origin of tephras recorded in postglacial lake sediments to the west of the Southern Andes, 44°S to 47°S. J Volcanol Geotherm Res 84:238–256CrossRefGoogle Scholar
  17. Kratzmann DJ, Carey S, Scasso RA, Naranjo JA (2009) Compositional variations and magma mixing in the 1991 eruptions of Hudson volcano, Chile. Bull Volcanol 71(4):419–439CrossRefGoogle Scholar
  18. Kratzmann DJ, Carey S, Scasso RA, Naranjo JA (2010) Role of cryptic amphibole crystallization in magma differentiation at Hudson volcano, Southern Volcanic Zone, Chile. Contrib Mineral Petrol 159:237–264CrossRefGoogle Scholar
  19. López-Escobar L, Kilian R, Kempton P, Tagiri M (1993) Petrology and geochemistry of Quaternary rocks from the southern volcanic zone of the Andes between 41°30′ and 46°00′S, Chile. Rev Geol Chile 20:33–55Google Scholar
  20. López-Escobar L, Parada MA, Hickey-Vargas R, Frey FA, Kempton P, Moreno H (1995) Calbuco volcano and minor eruptive centers distributed along the Liquiñe-Ofqui Fault Zone, Chile (41°S) contrasting origin of andesitic and basaltic magma in the Southern Volcanic Zone of the Andes. Contr Mineral Petrol 119:345–361CrossRefGoogle Scholar
  21. Lowe DJ (2011) Tephrochronology and its application: a review. Quat Geol 6:107–153CrossRefGoogle Scholar
  22. Markgraf V, Whitlock C, Haberle S (2007) Vegetation and fire history during the last 18,000 cal yr B.P. in Southern Patagonia: Mallín Pollux, Coyhaique, Province Aisén (45°41′30″, 71°50′30″W, 640 m elevation). Palaeogeogr Palaeoclimatol Palaeoecol 254:492–507CrossRefGoogle Scholar
  23. McCulloch R, Figuerero MJ, Mengoni GL, Barclay R (2014) Un registro Holoceníco de cambios ambientales dinamicos y cronología cultural de Monte Zeballos-Paso Roballos, Santa Cruz, Patagonia central. Libro de Resumenes, IX Jornadas de Arqueología de la Patagonia, Coyhaique, p 4Google Scholar
  24. Mella M, Ramos A, Kraus S, Duhart P (2012) Tefroestratigrafía, magnitud y geoquímica de erupciones holocenas mayores del volcán Mentolat, Andes del Sur (44°40′S), Chile. Actas, Congreso Geológico Chileno, No. 13, AntofagastaGoogle Scholar
  25. Miranda CG, Moreno PI, Vilanova I, Villa-Martínez RP (2013) Glacial fluctuations in the Coyhaique-Balmaceda sector of central Patagonia (45°S-46°S) during the last glacial termination. Bollettino di Geofisica 54:268–271Google Scholar
  26. Moreno P, Alloway BV, Villarosa G, Outes V, Henríquez WI, De Pol-Holz R, Pearce NJG (2015) A past-millennium maximum in postglacial activity from Volcán Chaitén, Southern Chile. Geology 43:47–50CrossRefGoogle Scholar
  27. Naranjo JA (1991) Nueva erupción del volcán Hudson. Rev Geol Chile 18:183–184Google Scholar
  28. Naranjo JA, Stern CR (1998) Holocene explosive activity of Hudson volcano, Southern Andes. Bull Volcanol 59(4):291–306CrossRefGoogle Scholar
  29. Naranjo JA, Stern CR (2004) Holocene tephrochronology of the southernmost part (42°30′-45°S) of the Andean Southern Volcanic Zone. Rev Geol Chile 31(2):225–240Google Scholar
  30. Nelson E, Forsythe R, Arit I (1994) Ridge collision tectonics in terrane development. J S Amer Earth Sci 7(3-4):271–278CrossRefGoogle Scholar
  31. Orihashi Y, Naranjo JA, Motoki A, Sumino H, Hirata D, Anma R, Nago K (2004) Quaternary volcanic activity of Hudson and Lautaro volcanoes, Chilean Patagonia: new constraints from K-Ar ages. Rev Geol Chile 31:207–224CrossRefGoogle Scholar
  32. Prieto A, Stern CR, Esterves J (2013) The peopling of the Fuego-Patagonian fjords by littoral hunter-gatherers after the mid-Holocene H1 eruption of Hudson volcano. Quat Internat 317:3–13CrossRefGoogle Scholar
  33. Rawson H, Naranjo JA, Smith V, Fontijn K, Pyle DM, Mather TA, Moreno H (2015) The frequency and magnitude of post-glacial explosive eruptions at Volcán Mocho-Choshuenco, Southern Chile. J Volcanol Geotherm Res 299:103–129CrossRefGoogle Scholar
  34. Saadat S, Stern CR (2011) Petrochemistry and genesis of olivine basalts from small monogenetic parasitic cones of Bazman stratovolcano, Makran arc, southeastern Iran. Lithos 125:609–617CrossRefGoogle Scholar
  35. Scasso RA, Corbella H, Tiberi P (1994) Sedimentological analysis of the tephra from the 12–15 August 1991 eruption of Hudson volcano. Bull Volcanol 56:121–132CrossRefGoogle Scholar
  36. Sellés D, Rodríguez AC, Dungan MA, Naranjo JA, Gardeweg M (2004) Geochemistry of Nevado de Longaví (36.2°S): a compositionally atypical volcano in the Southern Volcanic Zone of the Andes. Rev Geol Chile 31(2):293–315CrossRefGoogle Scholar
  37. Siani G, Colin C, Mechel E, Carel M, Richter T, Kissel C, Dewilde F (2010) Late glacial to Holocene terrigenous sediment record in the Northern Patagonian margin: paleoclimate implications. Palaeogeogr Palaeoclimatol Palaeoecol 297:26–36CrossRefGoogle Scholar
  38. Siani G, Michel E, De Pol-Holz R, DeVries T, Lamy F, Carel M, Isguder G, Dewilde F, Lourantou A (2013) Carbon isotope records reveal precise timing of enhanced Southern Ocean upwelling during the last deglaciation. Nat Commun 4:2758. doi: 10.1038/ncomms3758 CrossRefGoogle Scholar
  39. Stern CR (1991) Mid-Holocene tephra on Tierra del Fuego (54°S) derived from the Hudson volcano (46°S): evidence for a large explosive eruption. Rev Geol Chile 18:139–146Google Scholar
  40. Stern CR (2004) Active Andean volcanism: its geologic and tectonic setting. Rev Geol Chile 31(2):161–206CrossRefGoogle Scholar
  41. Stern CR (2008) Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes. Bull Volcanol 70(4):435–454CrossRefGoogle Scholar
  42. Stern CR, Kilian R (1996) Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean austral volcanic zone. Contrib Mineral Petrol 123:263–281CrossRefGoogle Scholar
  43. Stern CR, Moreno PI, Henrique WI, Villa-Martinez RP, Sagredo E, Aravena JC (2013) Tephrochronology in the area around Cochrane, Southern Chile. Bollettino di Geofisica 54:199–202Google Scholar
  44. Stern CR, de Porras ME, Maldonado A (2015a) Tephrochronology of the upper Río Cisnes valley (44°S), Southern Chile. Andean Geol 42(2):173–192Google Scholar
  45. Stern CR, Moreno PI, Henrique WI, Villa-Martinez RP, Sagredo E, Aravena JC, De Pol-Holz R (2015b) Holocene tephrochronology in the area around Cochrane, Southern Chile. Andean Geol 43(1) in pressGoogle Scholar
  46. Stuiver M, Reimer PJ, Braziunas TF (1998) High-precision radiocarbon age calibration for terrestrial and marine samples. Radiocarbon 40(3):1127–1151Google Scholar
  47. Unkel I, Fernandez M, Björck S, Ljung K, Wohlfarth B (2010) Records of environmental changes during the Holocene from Isla de los Estados (54.4°S), southern Tierra del Fuego. Global Planet Change 74:99–113CrossRefGoogle Scholar
  48. Vargas G, Rebolledo S, Sepúlveda SA, Lahsen A, Thiele R, Townley B, Padilla C, Rauld R, Herrera MJ, Lara M (2013) Submarine earthquake rupture, active faulting and volcanism along the major Liquiñe-Ofque Fault Zone and implications for seismic hazard assessment in the Patagonian Andes. Andean Geol 40:141–171Google Scholar
  49. Villa-Martínez R, Moreno PI, Valenzuela MA (2012) Deglacial and postglacial vegetation changes on the eastern slopes of the central Patagonian Andes (47°S). Quat Sci Rev 32:86–99CrossRefGoogle Scholar
  50. Völker D, Kutterolf S, Wehrmann H (2011) Comparative mass balance of volcanic edifices at the southern volcanic zone of the Andes between 33°S and 46°S. J Volcanol Geotherm Res 205:114–129CrossRefGoogle Scholar
  51. Watt SFL, Pyle DM, Mather TA (2011) Geology, petrology and geochemistry of the dome complex of Huequi volcano, Southern Chile. Andean Geol 38(2):335–348Google Scholar
  52. Watt SFL, Pyle DM, Mather TA (2013) The volcanic response to deglaciation: evidence from glaciated arcs and a reassessment of global eruption records. Earth Sci Rev 122:77–102CrossRefGoogle Scholar
  53. Weller DJ, Miranda CG, Moreno PI, Villa-Martínez RP, Stern CR (2014) A large late-glacial Ho eruption for the Hudson volcano, Southern Chile. Bull Volcanol 76:831–849CrossRefGoogle Scholar
  54. Wilson TM, Cole JW, Stewart C, Cronin SJ, Johnston DM (2011) Ash storms: impacts of wind-remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile. Bull Volcanol 73:223–239CrossRefGoogle Scholar
  55. Wilson T, Cole J, Johnston D, Cronin S, Stewart C, Dantas A (2012) Short- and long-term evacuation of people and livestock during a volcanic crisis: lessons from the 1991 eruption of Volcán Hudson, Chile. J Applied Volcanol 1:2CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • D. J. Weller
    • 1
  • C. G. Miranda
    • 2
  • P. I. Moreno
    • 2
  • R. Villa-Martínez
    • 3
  • C. R. Stern
    • 1
    Email author
  1. 1.Department Geological SciencesUniversity of ColoradoBoulderUSA
  2. 2.Instituto de Ecología y Biodiversidad, Departamento de Ciencias EcológicasUniversidad de ChileSantiagoChile
  3. 3.Gaia-AntarticaUniversidad de MagallanesPunta ArenasChile

Personalised recommendations