Bulletin of Volcanology

, 77:102 | Cite as

The hydrothermal alteration of cooling lava domes

  • Jessica L. Ball
  • Philip H. Stauffer
  • Eliza S. Calder
  • Greg A. Valentine
Research Article

Abstract

Hydrothermal alteration is a recognized cause of volcanic instability and edifice collapse, including that of lava domes or dome complexes. Alteration by percolating fluids transforms primary minerals in dome lavas to weaker secondary products such as clay minerals; moreover, secondary mineral precipitation can affect the porosity and permeability of dome lithologies. The location and intensity of alteration in a dome depend heavily on fluid pathways and availability in conjunction with heat supply. Here we investigate postemplacement lava dome weakening by hydrothermal alteration using a finite element numerical model of water migration in simplified dome geometries. This is combined with the rock alteration index (RAI) to predict zones of alteration and secondary mineral precipitation. Our results show that alteration potential is highest at the interface between the hot core of a lava dome and its clastic talus carapace. The longest lived alteration potential fields occur in domes with persistent heat sources and permeabilities that allow sufficient infiltration of water for alteration processes, but not so much that domes cool quickly. This leads us to conclude that alteration-induced collapses are most likely to be shallow seated and originate in the talus or talus/core interface in domes which have a sustained supply of magmatic heat. Mineral precipitation at these zones of permeability contrast could create barriers to fluid flow, potentially causing gas pressurization which might promote deeper seated and larger volume collapses. This study contributes to our knowledge of how hydrothermal alteration can affect lava domes and provides constraints on potential sites for alteration-related collapses, which can be used to target hazard monitoring.

Keywords

Hydrothermal alteration Lava dome Lava dome collapse Numerical modeling 

Supplementary material

445_2015_986_MOESM1_ESM.docx (76 kb)
ESM 1(DOCX 75 kb)

References

  1. Aizawa K, Ogawa Y, Ishido T (2009) Groundwater flow and hydrothermal systems within volcanic edifices: delineation by electric self-potential and magnetotellurics. J Geophys Res 114:1–12. doi:10.1029/2008JB005910 Google Scholar
  2. Alt-Epping P, Smith L (2001) Computing geochemical mass transfer and water/rock ratios in submarine hydrothermal systems: implications for estimating the vigour of convection. Geofluids 1:163–181. doi:10.1046/j.1468-8123.2001.00014.x CrossRefGoogle Scholar
  3. Anderson S, Arthur M, Asimow P et al (1999) Encyclopedia of volcanoes. 1442Google Scholar
  4. Ball JL, Calder ES, Hubbard BE, Bernstein ML (2013) An assessment of hydrothermal alteration in the Santiaguito lava dome complex, Guatemala: implications for dome collapse hazards. Bull Volcanol 75:676. doi:10.1007/s00445-012-0676-z CrossRefGoogle Scholar
  5. Barclay J, Johnstone JE, Matthews AJ (2006) Meteorological monitoring of an active volcano: implications for eruption prediction. J Volcanol Geotherm Res 150:339–358. doi:10.1016/j.jvolgeores.2005.07.020 CrossRefGoogle Scholar
  6. Barmin A, Melnik O, Sparks RSJ (2002) Periodic behavior in lava dome eruptions. Earth Planet Sci Lett 199:173–184CrossRefGoogle Scholar
  7. Bartetzko A, Klitzsch N, Iturrino G et al (2006) Electrical properties of hydrothermally altered dacite from the PACMANUS hydrothermal field (ODP Leg 193). J Volcanol Geotherm Res 152:109–120. doi:10.1016/j.jvolgeores.2005.10.002 CrossRefGoogle Scholar
  8. Bedrosian PA, Unsworth MJ, Johnston MJS (2007) Hydrothermal circulation at Mount St. Helens determined by self-potential measurements. J Volcanol Geotherm Res 160:137–146. doi:10.1016/j.jvolgeores.2006.09.003 CrossRefGoogle Scholar
  9. Bernard ML, Zamora M, Géraud Y, Boudon G (2007) Transport properties of pyroclastic rocks from Montagne Pelée volcano (Martinique, Lesser Antilles). J Geophys Res Solid Earth 112:1–16. doi:10.1029/2006JB004385 CrossRefGoogle Scholar
  10. Boudon G, Villemant B, Komorowski J et al (1998) The hydrothermal system at Soufriere Hills Volcano, Montserrat (West Indies): characterization and role in the on-going eruption. Geophys Res Lett 25:3693. doi:10.1029/98GL00985 CrossRefGoogle Scholar
  11. Brace WF (1984) Permeability of crystalline rocks: new in situ measurements. J Geophys Res 89:4327. doi:10.1029/JB089iB06p04327 CrossRefGoogle Scholar
  12. Brothelande E, Finizola A, Peltier A et al (2014) Fluid circulation pattern inside La Soufrière volcano (Guadeloupe) inferred from combined electrical resistivity tomography, self-potential, soil temperature and diffuse degassing measurements. J Volcanol Geotherm Res 288:105–122. doi:10.1016/j.jvolgeores.2014.10.007 CrossRefGoogle Scholar
  13. Calder ES, Luckett R, Sparks RSJ, Voight B (2002) Mechanisms of lava dome instability and generation of rockfalls and pyroclastic flows at Soufriere Hills Volcano, Montserrat. Geol Soc Lond Mem 21:173–190. doi:10.1144/GSL.MEM.2002.021.01.08 CrossRefGoogle Scholar
  14. Calder ES, Cortés JA, Palma JL, Luckett R (2005) Probabilistic analysis of rockfall frequencies during an andesite lava dome eruption: the Soufrière Hills Volcano, Montserrat. Geophys Res Lett 32:1–4. doi:10.1029/2005GL023594 CrossRefGoogle Scholar
  15. Carrasco-Núñez G, Díaz-Castellón R, Siebert L et al (2006) Multiple edifice-collapse events in the Eastern Mexican Volcanic Belt: the role of sloping substrate and implications for hazard assessment. J Volcanol Geotherm Res 158:151–176. doi:10.1016/j.jvolgeores.2006.04.025 CrossRefGoogle Scholar
  16. Chaudhuri A, Rajaram H, Viswanathan H et al (2009) Buoyant convection resulting from dissolution and permeability growth in vertical limestone fractures. Geophys Res Lett 36:587–596. doi:10.1029/2008GL036533 CrossRefGoogle Scholar
  17. Costa A, Melnik O, Sparks RSJ (2007) Controls of conduit geometry and wallrock elasticity on lava dome eruptions. Earth Planet Sci Lett 260:137–151. doi:10.1016/j.epsl.2007.05.024 CrossRefGoogle Scholar
  18. Cox ME, Browne P (1998) Hydrothermal alteration mineralogy as an indicator of hydrology at the Ngawha geothermal field, New Zealand. Geothermics 27:259–270. doi:10.1016/S0375-6505(97)10015-3 CrossRefGoogle Scholar
  19. Crandell DR (1971) Postglacial lahars from Mount Rainier Volcano, Washington. US Geol Surv Prof Pap 677:75Google Scholar
  20. Dash ZV (2003) Validation Test Plan (VTP) Results for the FEHM application version 2.21. 76. http://fehm.lanl.gov/pdfs/fehm_vvr.pdf
  21. Dash ZV, Fitzgerald MF, Pollock F (2003) Validation Test Plan (VTP) for the FEHM application version 2.21. 20. http://fehm.lanl.gov/pdfs/fehm_vvp.pdf
  22. Del Potro R, Hürlimann M (2009) The decrease in the shear strength of volcanic materials with argillic hydrothermal alteration, insights from the summit region of Teide stratovolcano, Tenerife. Eng Geol 104:135–143. doi:10.1016/j.enggeo.2008.09.005 CrossRefGoogle Scholar
  23. Devoli G, Cepeda J, Kerle N (2009) The 1998 Casita volcano flank failure revisited—new insights into geological setting and failure mechanisms. Eng Geol 105:65–83. doi:10.1016/j.enggeo.2008.12.006 CrossRefGoogle Scholar
  24. Duffield BWA, Richter DH, Priest SS (1995) Physical volcanology of silicic lava domes as exemplified by the Taylor Creek Rhyolite, Catron and Sierra Counties, New Mexico. US Geol Surv Map I-2399, 1:50,000Google Scholar
  25. Dufresne A (2009) Influence of runout path material on rock and debris avalanche mobility: field evidence and analogue modelling. PhD thesis, University of Freiburg, 268Google Scholar
  26. Elsworth D, Voight B, Thompson G, Young SR (2004) Thermal-hydrologic mechanism for rainfall-triggered collapse of lava domes. Geology 32:969. doi:10.1130/G20730.1 CrossRefGoogle Scholar
  27. Fields R, Soni BK, Thompson JF, et al. (1996) Geological applications of automatic grid generation tools for finite elements applied to porous flow modeling. Numerical Grid Generation in Computational Fluid Dynamics: Methods 1–9Google Scholar
  28. Fink JH, Griffiths RW (1998) Morphology, eruption rates, and rheology of lava domes: insights from laboratory models. J Geophys Res 103:527. doi:10.1029/97JB02838 CrossRefGoogle Scholar
  29. Fink JH, Pollard DD (1983) Structural evidence for dikes beneath silicic domes, Medicine Lake Highland Volcano. Calif Geol. doi:10.1130/0091-7613(1983)11<458 Google Scholar
  30. Finn CA, Deszcz-Pan M (2011) Helicopter magnetic and electromagnetic surveys at Mounts Adams, Baker and Rainier, Washington: implications for debris flow hazards and volcano hydrology. Soc Explor Geophys Glob Meet Abstr 15:3 pp. doi: 10.1190/1.3659065
  31. Finn CA, Deszcz-Pan M, Anderson ED, John DA (2007) Three-dimensional geophysical mapping of rock alteration and water content at Mount Adams, Washington: implications for lahar hazards. J Geophys Res 112:1–21. doi:10.1029/2006JB004783 Google Scholar
  32. Flint LE, Buesch DC, Flint AL (2006) Characterization of unsaturated zone hydrogeologic units using matrix properties and depositional history in a complex volcanic environment. Vadose Zone J 5:480. doi:10.2136/vzj2004.0180 CrossRefGoogle Scholar
  33. García A, Contreras E, Viggiano JC (1989) Establishment of an empirical correlation for estimating the thermal conductivity of igneous rocks. Int J Thermophys. doi:10.1007/BF00503174 Google Scholar
  34. Giggenbach W (1992) SEG distinguished lecture: magma degassing and mineral deposition in hydrothermal systems along convergent plate boundaries. Econ GeolGoogle Scholar
  35. Goff F, Janik CJ (2000) Geothermal systems. In: Sigurdsson H, Houghton B, McNutt SR et al (eds) Encycl. Volcanoes. Academic Press, San Diego, pp 817–834Google Scholar
  36. Hale AJ (2008) Lava dome growth and evolution with an independently deformable talus. Geophys J Int 174:391–417. doi:10.1111/j.1365-246X.2008.03806.x CrossRefGoogle Scholar
  37. Hale AJ, Calder ES, Loughlin SC et al (2009a) Modelling the lava dome extruded at Soufriere Hills Volcano, Montserrat, August 2005-May 2006; part I: dome shape and internal structure. J Volcanol Geotherm Res 187:69–84. doi:10.1016/j.jvolgeores.2009.08.014 CrossRefGoogle Scholar
  38. Hale AJ, Calder ES, Wadge G et al (2009b) Modelling the lava dome extruded at Soufriere Hills Volcano, Montserrat, August 2005-May 2006; part II: rockfall activity and talus deformation. J Volcanol Geotherm Res 187:53–68. doi:10.1016/j.jvolgeores.2009.08.023 CrossRefGoogle Scholar
  39. Harford CL, Pringle MS, Sparks RSJ, Young SR (2002) The volcanic evolution of Montserrat using 40Ar/39Ar geochronology. Geol Soc Lond Mem 21:93–113. doi:10.1144/GSL.MEM.2002.021.01.05 CrossRefGoogle Scholar
  40. Hemmings B, Whitaker F, Gottsmann J, Hughes A (2015) Hydrogeology of Montserrat review and new insights. J Hydrol Reg Stud 3:1–30. doi:10.1016/j.ejrh.2014.08.008 CrossRefGoogle Scholar
  41. Henley RW, Ellis AJ (1983) Geothermal systems ancient and modern: a geochemical review. Earth Sci Rev. doi:10.1016/0012-8252(83)90075-2 Google Scholar
  42. Hicks PD, Matthews AJ, Cooker MJ (2009) Thermal structure of a gas-permeable lava dome and timescale separation in its response to perturbation. J Geophys Res 114, B07201. doi:10.1029/2008JB006198 Google Scholar
  43. Horwell CJ, Williamson BJ, Llewellin EW et al (2013) The nature and formation of cristobalite at the Soufrière Hills volcano, Montserrat: implications for the petrology and stability of silicic lava domes. Bull Volcanol 75:1–19. doi:10.1007/s00445-013-0696-3 CrossRefGoogle Scholar
  44. Hurwitz S, Kipp K, Ingebritsen SE, Reid ME (2003) Groundwater flow, heat transport, and water table position within volcanic edifices: implications for volcanic processes in the Cascade Range. J Geophys Res 108:1–19. doi:10.1029/2003JB002565 Google Scholar
  45. Hutnak M, Fisher AT, Zühlsdorf L et al (2006) Hydrothermal recharge and discharge guided by basement outcrops on 0.7–3.6 Ma seafloor east of the Juan de Fuca Ridge: observations and numerical models. Geochem Geophys Geosyst. doi:10.1029/2006GC001242 Google Scholar
  46. Ikeda R, Kajiwara T, Omura K, Hickman S (2008) Physical rock properties in and around a conduit zone by welllogging in the Unzen scientific drilling project, Japan. J Volcanol Geotherm Res 175:13–19. doi:10.1016/j.jvolgeores.2008.03.036 CrossRefGoogle Scholar
  47. Ingebritsen SE, Hayba DO (1994) Fluid flow and heat transport near the critical point of H2. Geophys Res Lett 21:2199–2202. doi:10.1002/9780470114735.hawley04378 CrossRefGoogle Scholar
  48. Ingebritsen SE, Geiger S, Hurwitz S, Driesner T (2010) Numerical simulation of magmatic hydrothermal systems. Rev Geophys 48:1–33. doi:10.1029/2009RG000287 CrossRefGoogle Scholar
  49. John DA, Sisson TW, Breit GN et al (2008) Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: implications for debris-flow hazards and mineral deposits. J Volcanol Geotherm Res 175:289–314CrossRefGoogle Scholar
  50. Join JL, Folio JL, Robineau B (2005) Aquifers and groundwater within active shield volcanoes. Evolution of conceptual models in the Piton de la Fournaise volcano. J Volcanol Geotherm Res 147:187–201. doi:10.1016/j.jvolgeores.2005.03.013 CrossRefGoogle Scholar
  51. Keating GN (2005) The role of water in cooling ignimbrites. J Volcanol Geotherm Res 142:145–171. doi:10.1016/j.jvolgeores.2004.10.019 CrossRefGoogle Scholar
  52. Kerle N (2002) Volume estimation of the 1998 flank collapse at Casita volcano, Nicaragua: a comparison of photogrammetric and conventional techniques. Earth Surf Process Landf 27:759–772. doi:10.1002/esp.351 CrossRefGoogle Scholar
  53. Khaleel R (1989) Scale dependence of continuum models for fractured basalts. Water Resour Res 25:1847. doi:10.1029/WR025i008p01847 CrossRefGoogle Scholar
  54. Lavigne F, Thouret J, Voight B et al (2000) Lahars at Merapi volcano, Central Java: an overview. J Volcanol Geotherm Res 100:423–456. doi:10.1016/S0377-0273(00)00150-5 CrossRefGoogle Scholar
  55. Le Friant A, Boudon G, Komorowski JC et al (2006) Potential flank-collapse of Soufriere volcano, Guadeloupe, Lesser Antilles: numerical simulation and hazards. Nat Hazards 39:381–393. doi:10.1007/s11069-005-6128-8 CrossRefGoogle Scholar
  56. Lesparre N, Gibert D, Marteau J et al (2012) Density muon radiography of La Soufriere of Guadeloupe volcano: comparison with geological, electrical resistivity and gravity data. Geophys J Int 190:1008–1019. doi:10.1111/j.1365-246X.2012.05546.x CrossRefGoogle Scholar
  57. Lopez F (2004) Monimiento de sedimentos en el cauce del Rio Samala: Informe Final. Coord Nac Para La Reducc Desastr 37Google Scholar
  58. McGuire W (2003) Volcano instability and lateral collapse. I:33–45Google Scholar
  59. Miller TA, Vessilinov VV, Stauffer PH, et al (2007) Integration of geologic frameworks in meshing and setup of computational hydrogeologic models, Pajarito Plateau, New Mexico. New Mex. Geol. Soc. Guid. Book, 58th F. Conf. Geol. Jemez Mt. Reg. IIIGoogle Scholar
  60. Mueller S, Scheu B, Spieler O, Dingwell DB (2008) Permeability control on magma fragmentation. Geology. doi:10.1130/G24605A.1 Google Scholar
  61. Nakada S, Shimizu H, Ohta K (1999) Overview of the 1990–1995 eruption at Unzen Volcano. J Volcanol Geotherm Res 89:1–22. doi:10.1016/S0377-0273(98)00118-8 CrossRefGoogle Scholar
  62. Nicollin F, Gibert D, Beauducel F et al (2006) Electrical tomography of La Soufrière of Guadeloupe volcano: field experiments, 1D inversion and qualitative interpretation. Earth Planet Sci Lett 244:709–724. doi:10.1016/j.epsl.2006.02.020 CrossRefGoogle Scholar
  63. Ogawa Y, Daimaru H, Shimizu A (2007) Experimental study of post-eruption overland flow and sediment load from slopes overlain by pyroclastic-flow deposits, Unzen volcano, Japan. Géomorphologie Reli Process Environ 237–246. doi:10.4000/geomorphologie.3962
  64. Opfergelt S, Delmelle P, Boivin P, Delvaux B (2006) The 1998 debris avalanche at Casita volcano, Nicaragua: investigation of the role of hydrothermal smectite in promoting slope instability. Geophys Res Lett 33:4. doi:10.1029/2006gl026661, L15305CrossRefGoogle Scholar
  65. Platz T, Cronin SJ, Procter JN et al (2012) Non-explosive, dome-forming eruptions at Mt. Taranaki, New Zealand. Geomorphology 136:15–30. doi:10.1016/j.geomorph.2011.06.016 CrossRefGoogle Scholar
  66. Rad SD, Allègre CJ, Louvat P (2007) Hidden erosion on volcanic islands. Earth Planet Sci Lett 262:109–124. doi:10.1016/j.epsl.2007.07.019 CrossRefGoogle Scholar
  67. Raffensperger JP, Vlassopoulos D (1999) The potential for free and mixed convection in sedimentary basins. Hydrogeol J 7:505–520. doi:10.1007/s100400050224 CrossRefGoogle Scholar
  68. Reid ME, Sisson TW, Brien DL (2002) Volcano collapse promoted by hydrothermal alteration and edifice shape, Mount Rainier, Washington. Geology 29:779–782. doi:10.1130/0091-7613(2001)029<0779:VCPBHA>2.0.CO;2 CrossRefGoogle Scholar
  69. Reyes AG (1990) Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment. J Volcanol Geotherm Res. doi:10.1016/0377-0273(90)90057-M Google Scholar
  70. Riggs N, Carrasco-Nunez G (2004) Evolution of a complex isolated dome system, Cerro Pizarro, central México. Bull Volcanol 66:322–335. doi:10.1007/s00445-003-0313-y CrossRefGoogle Scholar
  71. Salaün A, Villemant B, Gérard M et al (2011) Hydrothermal alteration in andesitic volcanoes: trace element redistribution in active and ancient hydrothermal systems of Guadeloupe (Lesser Antilles). J Geochem Explor 111:59–83. doi:10.1016/j.gexplo.2011.06.004 CrossRefGoogle Scholar
  72. Sammel EA, Ingebritsen SE, Mariner RH (1988) The hydrothermal system at Newberry volcano, Oregon. J Geophys Res 93:10,149–10,162CrossRefGoogle Scholar
  73. Scheu B, Spieler O, Dingwell DB (2006) Dynamics of explosive volcanism at Unzen volcano: an experimental contribution. Bull Volcanol 69:175–187. doi:10.1007/s00445-006-0066-5 CrossRefGoogle Scholar
  74. Scott KM, Vallance JW (1995) Debris flow, debris avalanche, and flood hazards at and downstream from Mount Rainier, Washington. Hydrol Investig Atlas 9 (2 sheets)Google Scholar
  75. Scott KM, Vallance JW, Kerle N et al (2005) Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: occurrence, bulking and transformation. Earth Surf Process Landforms 30:59–79. doi:10.1002/esp.1127 CrossRefGoogle Scholar
  76. Sekioka M (1988) Tentative estimate of bulk permeability of basement rocks from heat discharges in a geothermal field. J Volcanol Geotherm Res. doi:10.1016/0377-0273(88)90006-6 Google Scholar
  77. Sheridan MF, Bonnard C, Careeno R, et al (1999) Report on the 30 October 1998 rock fall / avalanche and breakout flow of Casita Volcano, Nicaragua, triggered by Hurricane Mitch. Landslide News 1202–1204Google Scholar
  78. Siebert L (2002) Landslides resulting from structural failure of volcanoes. Catastrophic landslides Eff Occur Mech 15:209–235. doi:10.1130/REG15-p209 CrossRefGoogle Scholar
  79. Smith JV, Miyake Y, Oikawa T (2001) Interpretation of porosity in dacite lava domes as ductile-brittle failure textures. J Volcanol Geotherm Res 112:25–35. doi:10.1016/S0377-0273(01)00232-3 CrossRefGoogle Scholar
  80. Smithsonian Institution (1991) Unzen Bull Glob Volcanism Netw 16Google Scholar
  81. Sparks RSJ, Barclay J, Calder ES et al (2002) Generation of a debris avalanche and violent pyroclastic density current on 26 December (Boxing day) 1997 at Soufriere Hills Volcano, Montserrat. Geol Soc Lond Mem 21:409–434. doi:10.1144/GSL.MEM.2002.021.01.18 CrossRefGoogle Scholar
  82. Tanaka HKM, Nakano T, Takahashi S et al (2007) Imaging the conduit size of the dome with cosmic-ray muons: the structure beneath Showa-Shinzan Lava Dome, Japan. Geophys Res Lett 34, L22311. doi:10.1029/2007GL031389 CrossRefGoogle Scholar
  83. Velázquez E, Gómez-Sal A (2007) Environmental control of early succession on a large landslide in a tropical dry ecosystem (Casita volcano, Nicaragua). Biotropica 39:601–609. doi:10.1111/j.1744-7429.2007.00306.x CrossRefGoogle Scholar
  84. Voight B, Elsworth D (1997) Failure of volcano slopes. Geotechnique. doi:10.1680/geot.1997.47.1.1 Google Scholar
  85. Voight B, Elsworth D (2000) Instability and collapse of hazardous gas-pressurized lava domes. Geophys Res Lett 27:1–4CrossRefGoogle Scholar
  86. Voight B, Komorowski J, Norton GE et al (2002) The 26 December (Boxing day) 1997 sector collapse and debris avalanche at Soufriere Hills Volcano, Montserrat. Geol Soc Lond Mem 21:363–407. doi:10.1144/GSL.MEM.2002.021.01.17 CrossRefGoogle Scholar
  87. Wadge G, Ryan G, Calder ES (2009) Clastic and core lava components of a silicic lava dome. Geology 37:551–554. doi:10.1130/G25747A.1 CrossRefGoogle Scholar
  88. Walker JA, Templeton S, Cameron BI (2006) The chemistry of spring waters and fumarolic gases encircling Santa Maria Volcano, Guatemala. Geol Soc Am Spec Pap 412:59. doi:10.1130/2006.2412(04) Google Scholar
  89. Walter TR, Ratdomopurbo A, Aisyah N et al (2013) Dome growth and coulée spreading controlled by surface morphology, as determined by pixel offsets in photographs of the 2006 Merapi eruption. J Volcanol Geotherm Res 261:121–129. doi:10.1016/j.jvolgeores.2013.02.004 CrossRefGoogle Scholar
  90. Watanabe T, Shimizu Y, Noguchi S, Nakada S (2008) Permeability measurements on rock samples from Unzen scientific drilling project drill hole 4 (USDP-4). J Volcanol Geotherm Res 175:82–90. doi:10.1016/j.jvolgeores.2008.03.021 CrossRefGoogle Scholar
  91. Watts RB, Herd RA, Sparks RSJ, Young SR (2002) Growth patterns and emplacement of the andesitic lava dome at Soufriere Hills Volcano, Montserrat. Geol Soc Lond Mem 21:115–152. doi:10.1144/GSL.MEM.2002.021.01.06 CrossRefGoogle Scholar
  92. Wetzel LR, Raffensperger JP, Shock EL (2001) Predictions of hydrothermal alteration within near-ridge oceanic crust from coordinated geochemical and fluid flow models. J Volcanol Geotherm Res 110:319–342. doi:10.1016/S0377-0273(01)00215-3 CrossRefGoogle Scholar
  93. Wicks C, de la Llera JC, Lara LE, Lowenstern J (2011) The role of dyking and fault control in the rapid onset of eruption at Chaitén volcano, Chile. Nature 478:374–377. doi:10.1038/nature10541 CrossRefGoogle Scholar
  94. Zyvoloski G (2007) FEHM: a control volume finite element code for simulating subsurface multi-phase multi-fluid heat and mass transfer. Los Alamos Unclassif. Rep. LA-UR-07-3359Google Scholar
  95. Zyvoloski GA, Robinson BA, Dash ZV, Trease LL (1999) Models and methods summary for the FEHM application. Los Alamos Natl Laboratory Publ SC-194Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Jessica L. Ball
    • 1
    • 2
  • Philip H. Stauffer
    • 3
  • Eliza S. Calder
    • 4
  • Greg A. Valentine
    • 1
  1. 1.Department of GeologyUniversity at BuffaloBuffaloUSA
  2. 2.United States Geological SurveyMenlo ParkUSA
  3. 3.Los Alamos National LaboratoryLos AlamosUSA
  4. 4.School of GeoSciencesUniversity of EdinburghEdinburghUK

Personalised recommendations