Skip to main content
Log in

Dynamics of the major plinian eruption of Samalas in 1257 A.D. (Lombok, Indonesia)

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The 1257 A.D. caldera-forming eruption of Samalas (Lombok, Indonesia) was recently associated with the largest sulphate spike of the last 2 ky recorded in polar ice cores. It is suspected to have impacted climate both locally and at a global scale. Extensive fieldwork coupled with sedimentological, geochemical and physical analyses of eruptive products enabled us to provide new constraints on the stratigraphy and eruptive dynamics. This four-phase continuous eruption produced a total of 33–40 km3 dense rock equivalent (DRE) of deposits, consisting of (i) 7–9 km3 DRE of pumiceous plinian fall products, (ii) 16 km3 DRE of pyroclastic density current deposits (PDC) and (iii) 8–9 km3 DRE of co-PDC ash that settled over the surrounding islands and was identified as far as 660 km from the source on the flanks of Merapi volcano (Central Java). Widespread accretionary lapilli-rich deposits provide evidence of the occurrence of a violent phreatomagmatic phase during the eruption. With a peak mass eruption rate of 4.6 × 108 kg/s, a maximum plume height of 43 km and a dispersal index of 110,500 km2, the 1257 A.D. eruption stands as the most powerful eruption of the last millennium. Eruption dynamics are consistent with an efficient dispersal of sulphur-rich aerosols across the globe. Remarkable reproducibility of trace element analysis on a few milligrammes of pumiceous tephra provides unequivocal evidence for the geochemical correlation of 1257 A.D. proximal reference products with distal tephra identified on surrounding islands. Hence, we identify and characterise a new prominent inter-regional chronostratigraphic tephra marker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Andreastuti SD (1999) Stratigraphy and geochemistry of Merapi volcano, central Java, Indonesia: implication for assessment of volcanic hazard. PhD thesis, University of Auckland

  • Andreastuti SD, Alloway BV, Smith IEM (2000) A detailed tephro-stratigraphic framework at Merapi Volcano, Central Java, Indonesia: implications for eruption predictions and hazard assessment. J Volcanol Geotherm Res 100:51–67

    Article  Google Scholar 

  • Barbier B (2010) Bilan thermique et caractérisation géochimique de l’activité hydrothermale du volcan Rinjani (Lombok, Indonésie). PhD thesis, Université Libre de Bruxelles

  • Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40(5):415–418

    Article  Google Scholar 

  • Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75:742–762

    Article  Google Scholar 

  • Bonadonna C, Houghton B (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456

    Article  Google Scholar 

  • Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81:173–187

    Article  Google Scholar 

  • Bonadonna C, Cioni R, Pistolesi M, Connor C, Scollo S, Pioli L, Rosi M (2013) Determination of the largest clast sizes of tephra deposits for the characterization of explosive eruptions: a study of the IAVCEI commission on tephra hazard modelling. Bull Volcanol 75(680):1–15. doi:10.1007/s00445-012-0680-3

    Google Scholar 

  • Branney MJ, Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol Soc Lond Mem 27:1–143

    Article  Google Scholar 

  • Bull ID, Knicker H, Poirier N, Porter HC, Scott AC, Sparks RSJ, Richard P (2008) Evershed, biomolecular characteristics of an extensive tar layer generated during eruption of the Soufriere Hills volcano, Montserrat, West Indies. Org Geochem 39:1372–1383

    Article  Google Scholar 

  • Bursik MI, Sparks RSJ, Gilbert JS, Carey SN (1992) Sedimentation of tephra by volcanic plumes: I. Theory and its comparison with a study of the Fogo A plinian deposit, Sao Miguel (Azores). Bull Volcanol 54:329–344

    Article  Google Scholar 

  • Carazzo G, Kaminski E, Tait S (2008) On the rise of turbulent plumes: quantitative effects of variable entrainment for submarine hydrothermal vents, terrestrial and extra-terrestrial explosive volcanism. J Geophys Res. doi:10.1029/2007JB005458

    Google Scholar 

  • Carey SN, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125

    Article  Google Scholar 

  • Cole-Dai J, Ferris DG, Lanciki AL, Savarino J, Thiemens MH, McConnell JR (2013) Two likely stratospheric volcanic eruptions in the 1450s C.E. found in a bipolar, subannually dated 800 year ice core record. J Geophys Res 118:7459–7466. doi:10.1002/jgrd.50587

    Google Scholar 

  • Crosweller HS, Arora B, Brown SK, Cottrell E, Deligne NI, Guerrero NO, Hobbs L, Kiyosugi K, Loughlin SC, Lowndes J, Nayembil M, Siebert L, Sparks RSJ, Takarada S, Venzke E (2012) Global database on large magnitude explosive volcanic eruptions (LaMEVE). J Appl Volcanol 1:4. http://www.appliedvolc.com/content/1/1/4

  • Daggit ML, Mather TA, Pyle DM, Page S (2014) AshCalc—a new tool for the comparison of the exponential, power-law and Weibull models of tephra deposition. J Appl Volcanol 3:7

    Article  Google Scholar 

  • Druitt TH, Calder ES, Cole PD, Hoblitt RP, Loughlin SC, Norton GE, Ritchie LJ, Sparks RS, Voight B (2002) Small-volume, highly mobile pyroclastic flows formed by rapid sedimentation from pyroclastic surges at Soufrière Hills volcano, Montserrat: an important volcanic hazard. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills volcano, Montserrat, from 1995 to 1999: Mem Geol Soc Lond 21, pp 263–280

  • Engwell SL, Sparks RSJ, Aspinall WP (2013) Quantifying uncertainties in the measurement of tephra fall thickness. J Appl Volcanol 2:5

    Article  Google Scholar 

  • Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 4:156–167

    Article  Google Scholar 

  • Fontijn K, Costa F, Sutawidjaja I, Newhall CG, Herrin JS (2015) A five thousand year record of multiple highly explosive mafic eruptions from Gunung Agung (Bali, Indonesia): implications for eruption frequency and volcanic hazards. Bull Volcanol. doi:10.1007/s00445-015-0943-x

    Google Scholar 

  • Furukawa R, Takada A, Nasution A (2005) Caldera forming eruption of Rinjani volcano at 13th century, Lombok, Indonesia. In: Abstracts Fall Meet Volcanol Soc Japan, Hokkaido, Japan

  • Furukawa R, Takada A, Nasution A, Taufiqurrohman R (2014) Eruptive sequence of Rinjani caldera, 13th century, Lombok, Indonesia. In: Abstracts Japan Geosci Union Meet, Yokohama, Japan, 28 May–2 April 2014

  • Gao C, Oman L, Robock A, Stenchikov L (2008) Atmospheric volcanic loading derived from bipolar ice cores: accounting for the spatial distribution of volcanic deposition. J Geophys Res. doi:10.1029/2006JD007461

    Google Scholar 

  • Gennaretti F, Arseneault D, Nicault A, Perreault L, Bégin Y (2014) Volcano-induced regime shifts in millennial tree-ring chronologies from northeastern North America. Proc Natl Acad Sci U S A 111(28):10077–10082. doi:10.1073/pnas.1324220111

    Article  Google Scholar 

  • Gerlach M, Westrich RH, Symonds RB (1996) Preeruption vapor in magma of the climactic Mount Pinatubo eruption: source of the giant stratospheric sulfur dioxide cloud. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. PHIVOLCS, Quezon City, Philippines and University of Washington Press, Seattle, pp 415–433

  • Gertisser R (2001) Gunung Merapi (Java, Indonesien): Eruptionsgeschichte und magmatische Evolution eines Hochrisiko-Vulkans. PhD thesis, Universität Freiburg

  • Gertisser R, Charbonnier SJ, Keller J, Quidelleur X (2012) The geological evolution of Merapi volcano, Central Java. Bull Volcanol 74:1213–1233. doi:10.1007/s00445-012-0591-3

    Article  Google Scholar 

  • Global Volcanism Program (2014) Bulletin, Smithsonian Institution, Washington D.C. http://www.volcano.si.edu/. Accessed 31 Dec 2014

  • Houghton BF, Wilson CJN, Smith RT, Gilbert JS (2000) Phreatoplinian eruptions. In: Sigurdsson H, Houghton BF, Rymer H, Stix J, McNutt S (eds) Encyclopedia of volcanoes, pp 513–525

  • Houghton BF, Carey RJ, Rosenberg MD (2014) The 1800a Taupo eruption: “Ill wind” blows the ultraplinian type event down to plinian. Geology 42(5):459–461

    Article  Google Scholar 

  • Kandlbauer J, Sparks RSJ (2014) New estimates of the 1815 Tambora eruption volume. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2014.08.020

    Google Scholar 

  • Lavigne F, Degeai JP, Komorowski JC, Guillet S, Robert V, Lahitte P, Oppenheimer C, Stoffel M, Vidal CM, Pratomo I, Wassmer P, Hajdas I, Sri Hadmoko D, de Bélizal E (2013) Source of the great A.D. 1257 mystery eruption unveiled: Samalas volcano, Rinjani volcanic complex, Indonesia. Proc Natl Acad Sci U S A. doi:10.1073/pnas.13075201100

    Google Scholar 

  • Longpré MA, Stix J, Burkert C, Hansteen T, Kutterolf S (2014) Sulfur budget and global climate impact of the A.D. 1835 eruption of Cosigüina volcano, Nicaragua. Geophys Res Lett 41. doi:10.1002/2014GL061205

  • Miller CF, Wark DA (2008) Supervolcanoes and their explosive super-eruptions. Elements 4(1):11–16

    Article  Google Scholar 

  • Miller GH, Geirsdóttir A, Zhong Y, Larsen DJ, Otto-Bliesner BL, Holland MM, Bailey DA, Refsnider KA, Lehman SJ, Southon JR, Anderson C, Björnsson H, Thordarson T (2012) Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys Res Lett 39, L0270810. doi:10.1029/2011GL050168

    Article  Google Scholar 

  • Nasution A, Takada A, Rosgandika M (2004) The volcanic activity of Rinjani, Lombok Island, Indonesia, during the last thousand years, viewed from 14C datings. In: Abstracts of the Convention Bandung 2004, The 33rd annual convention & exhibition, 29 Nov–1 Oct 2004, Bandung, Indonesia

  • Nasution A, Takada A, Udibowo WD, Hutasoit L (2010) Rinjani and Propok volcanics as a heat sources of geothermal prospects from eastern Lombok, Indonesia. Jurnal Geoaplika 5(1):1–9

    Google Scholar 

  • Newhall CG, Dzurisin D (1989) Historical unrest at large calderas of the world. US Geol Surv Prof Pap 1855:1–1109

    Google Scholar 

  • Newhall CG, Self S (1982) The Volcanic Explosivity Index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res Oceans Atm 87:1231–1238

    Article  Google Scholar 

  • Newhall CG, Bronto S, Alloway B, Banks NG, Bahar I, Del Marmol MA, Hadisantono RD, Holcomb RT, McGeehin J, Miksic JN, Rubin M, Sayudi SD, Sukhyar R, Andreastuti S, Tilling RI, Torley R, Trimble D, Wirakusumah AD (2000) 10,000 years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications. J Volcanol Geotherm Res 100:9–50

    Article  Google Scholar 

  • Oppenheimer C (2003) Ice core and palaeoclimatic evidence for the timing and nature of the great mid-13th century volcanic eruption. Int J Climatol 23(4):417–426

    Article  Google Scholar 

  • Palais JM, Germani MS, Zielinski GA (1992) Interhemispheric transport of volcanic ash from a 1259 A.D. volcanic eruption to the Greenland and Antarctic ice sheets. Geophys Res Lett 19(8):801–804

    Article  Google Scholar 

  • Plummer CT, Curran MAJ, van Ommen TD, Rasmussen SO, Moy AD, Vance TR, Clausen HB, Vinther BM, Mayewski PA (2012) An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu. Clim Past 8:1929–1940

    Article  Google Scholar 

  • Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51(1):1–15

    Article  Google Scholar 

  • Pyle DM (1995) Assessment of the minimum volume of tephra fall deposits. J Volcanol Geotherm Res 69(3–4):379–382

    Article  Google Scholar 

  • Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton B, Reimer H, STix J, McNutt S (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 263–269

    Google Scholar 

  • Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219. doi:10.1029/1998RG000054

    Article  Google Scholar 

  • Rodysill JR, Russell JM, Bijaksana S, Brown ET, Safiuddin LO, Eggermont H (2012) A paleolimnological record of rainfall and drought from East Java, Indonesia during the last 1,400 years. J Paleolimnol 47:125–139

    Article  Google Scholar 

  • Rodysill JR, Russell JM, Crausbay SD, Bijaksana S, Vuille M, Edwards RL, Cheng H (2013) A severe drought during the last millennium in East Java, Indonesia. Quat Sci Rev 80:102–111

    Article  Google Scholar 

  • Schmidt A, Robock A (2015) Volcanism, the atmosphere and climate through time. In: Schmdit A, Fristad KE and Elkins-Tanton LT (eds) Volcanism and global environmental change. Cambridge Univ Press 195–227

  • Schneider DP, Ammann CM, Otto-Bliesner BL, Kaufman DS (2009) Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System model. J Geophys Res 114, D15101

    Article  Google Scholar 

  • Scott AC, Sparks RSJ, Bull ID, Knicker H, Evershed RP (2008) Temperature proxy data and their significance for the understanding of pyroclastic density currents. Geology 36(2):143–146

    Article  Google Scholar 

  • Self S (2006) The effects and consequences of very large explosive volcanic eruptions. Phil Trans R Soc A 364:2073–2097. doi:10.1098/rsta.2006.1814

    Article  Google Scholar 

  • Self S, Rampino MR, Newton MS, Wolff JA (1984) Volcanological study of the great Tambora eruption of 1815. Geology 12:659–663

    Article  Google Scholar 

  • Self S, Gertisser R, Thordarson T, Rampino MR, Wolff JA (2004) Magma volume, volatile emissions, and stratospheric aerosols from the 1815 eruption of Tambora. Geophys Res Lett 31, L20608. doi:10.1029/2004GL020925

    Article  Google Scholar 

  • Sheridan MF, Wohletz KH (1983) Hydrovolcanism: basic considerations and review. J Volcanol Geotherm Res 17:1–29

    Article  Google Scholar 

  • Sigl M, McConnell JR, Layman L, Maselli O, McGwire K, Pasteris D, Dahl-Jensen D, Steffensen JP, Vinther B, Edwards R, Mulvaney R, Kipfstuhl S (2013) A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. J Geophys Res Atmos 118:1151–1169. doi:10.1029/2012JD018603

    Article  Google Scholar 

  • Sigl M, McConnell JR, Toohey M, Curran M, Das SB, Edwards R, Isaksson E, Kawamura K, Kipfstuhl S, Kruger K, Layman L, Maselli OJ, Motizuki Y, Motoyama H, Pasteris DR, Severi M (2014) Insights from Antarctica on volcanic forcing during the Common Era. Nat Clim Chang 4:693–697

    Article  Google Scholar 

  • Sigurdsson H, Carey S (1989) Plinian and co-ignimbrite tephra fall from the 1815 eruption of Tambora volcano. Bull Volcanol 51:243–270

    Article  Google Scholar 

  • Simons WJF, Socquet A, Vigny C, Ambrosius BAC, Haji Abu S, Promthong C, Subarya C, Sarsito DA, Matheussen S, Morgan P, Spakman W (2007) A decade of GPS in Southeast Asia: resolving Sundaland motion and boundaries. J Geophys Res 112, B06420. doi:10.1029/2005JB003868

    Google Scholar 

  • Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:13–15

    Article  Google Scholar 

  • Sparks RSJ, Walker GPL (1977) The significance of vitric-enriched air-fall ashes associated with crystal-enriched ignimbrites. J Volcanol Geotherm Res 2:329–341

    Article  Google Scholar 

  • Sparks RSJ, Wilson L (1976) A model for the formation of ignimbrite by gravitational column collapse. J Geol Soc Lond 132:441–451

    Article  Google Scholar 

  • Sparks RSJ, Barclay J, Calder ES, Herd RA, Komorowski JC, Luckett R, Norton GE, Ritchie LJ, Voight B, Woods AW (2002) Generation of a debris avalanche and violent pyroclastic density current on 26 December (Boxing Day) 1997 at Soufriere Hills volcano, Montserrat. In: Druitt TH, Kokelaar BP (eds) Geol Soc Lond, Mem 21:409–434

  • Stothers RB (2000) Climatic and demographic consequences of the massive eruption of 1258. Clim Chang 45(2):361–374

    Article  Google Scholar 

  • Sulpizio R (2005) Three empirical methods for the calculation of distal volume of tephra-fall deposits. J Volcanol Geotherm Res 145(3–4):315–336

    Article  Google Scholar 

  • Takada A, Nasution A, Rosgandika M (2003) Eruptive history during the last 10ky for the caldera-forming eruption of Rinjani volcano. In: Abstracts of Japan Earth and Planet Sci Joint Meet, Chiba, Japan, 26–29 May 2003

  • Timmreck C (2012) Modelling the climatic effect of large explosive volcanic eruptions. WIREs Clim Chang. doi:10.1002/wcc.192

    Google Scholar 

  • Vidal CM, Métrich N, Komorowski JC, Pratomo I, Lavigne F, Surono (2013) Insights into the magmatic processes leading to the Holocene caldera eruption of Rinjani, Indonesia. Goldschmidt 2013 International Conference, Florence, Italy, 25–30 August 2013, Mineral Mag 77(5):2413

  • Vidal C, Komorowski J-C, Métrich N, Pratomo I, Kartadinata N, Lavigne F, Prambada O, Fontijn K, Rodysill J, Michel A, Kuhn W, Surono (2015) Eruptive dynamics of a major plinian eruption with evidence of global impact: the recently discovered Samalas 1257 AD eruption (Rinjani volcanic complex, Lombok, Indonesia). In: Abstracts of Volcanoes, Climate, and Society, Bicentenary of the great Tambora eruption Conference, 7–11 April 2015, Bern, Switzerland

  • Voight B, Komorowski JC, Norton G, Belousov A, Belousova M, Boudon G, Francis P, Franz W, Sparks S, Young S (2002) The 1997 Boxing Day sector collapse and debris avalanche, Soufriere Hills Volcano, Montserrat, B.W.I. In: Druitt, T., Kokelaar, B.P. (Eds.), The eruption of Soufriere Hills volcano, Montserrat, from 1995–1999: Mem Geol Soc Lond 21, pp 363–407

  • Walker GPL (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rundsch 62:431–446

    Article  Google Scholar 

  • Walker GPL (1980) The Taupo Pumice: product of the most powerful known (Ultraplinian) eruption? J Volcanol Geotherm Res 8:69–94

    Article  Google Scholar 

  • Walker GPL (1981) The Waimihia and Hatepe plinian deposits from the rhyolitic Taupo volcanic Centre. N Z J Geol Geophys 24:305–324

    Google Scholar 

  • Williams SN, Self S (1983) The October 1902 plinian eruption of Santa Maria volcano, Guatemala. J Volcanol Geotherm Res 16:36–56

    Google Scholar 

  • Witter JB, Self S (2007) The Kuwae (Vanuatu) eruption of AD 1452: potential magnitude and volatile release. Bull Volcanol 69:301–318. doi:10.1007/s00445-006-0075-4

    Article  Google Scholar 

  • Woods A, Wohletz K (1991) Dimensions and dynamics of co-ignimbrite eruption columns. Nature 350:225–227

    Article  Google Scholar 

  • Young SR (1990) Physical volcanology of Holocene airfall deposits from Mt Mazama, Crater Lake, Oregon. PhD thesis, University of Lancaster

  • Zielinski GA, Mayewski PA, Meeker LD, Whitlow S, Twickler MS, Morrison M, Meese D, Alley RB, Gow AJ (1994) Record of volcanism since 7000 B.C. from the GISP2 Greenland ice core and implication for the volcano-climate system. Science 264:948–952

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to RISTEK for allowing us to undertake this research and the Nusa Tengara Barat Governor’s Office for administrative support. We thank Dr Hendrasto (PVMBG/CVGHM) for his steadfast support and our Indonesian colleagues for field and administrative assistance. We are very grateful to J.-P. Toutain and Etny at IRD for valuable assistance and the institutional support. We are most indebted to Sofie and her staff at PVMBG for their help with administrative procedures and to Didik for the skilful dedicated driving. We also thank F. Le Cornec for her assistance for ICP-MS measurements, S. Hidalgo for pumice density measurements, M. Abrams (NASA) for providing ASTER satellite data and Arlyn (Rinjani Observatory, PVMBG) and H. Rachmat for samples of Barujari lavas. We thank Y. Wahyudi (PVMBG) and participants of the Rinjani excursion (CoV 8) for sharing their ideas. We are grateful for discussions and field insights on Merapi stratigraphy with S. Andreastuti, R. Gertisser and S. Charbonnier, and on marine cores with W. Kuhnt. 14C dates were obtained by C. Moreau and J.-P. Dumoulin (LMC14, CNRS UMS2572). We are grateful to S. Self (editor) and T. Druitt and R. Gertisser (reviewers) for their insightful and constructive comments that helped us to improve our manuscript. K. Fontijn is supported by NERC grant NE/I013210/1. This work is a part of C. Vidal’s PhD thesis (Institut de Physique du Globe de Paris). It has been partly funded by the Institut National des Sciences de l’Univers-Centre National de la Recherche Scientifique programme CT3-ALEA, projects ECRin 2013 and 2014, and INSU-CNRS Artemis 2014 for 14C dating. This is IPGP contribution 3550.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Céline M. Vidal.

Additional information

Editorial responsibility: S. Self

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 126 kb)

ESM 2

(PDF 131 kb)

ESM 3

(PDF 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidal, C.M., Komorowski, JC., Métrich, N. et al. Dynamics of the major plinian eruption of Samalas in 1257 A.D. (Lombok, Indonesia). Bull Volcanol 77, 73 (2015). https://doi.org/10.1007/s00445-015-0960-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-015-0960-9

Keywords

Navigation