Skip to main content
Log in

Crystal size distributions of plagioclase in lavas from the July–August 2001 Mount Etna eruption

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

During the 2001 eruption of Mount Etna, two independent vent systems simultaneously erupted two different lavas. The Upper Vents system (UV), opened between 3100 and 2650 m a.s.l., emitted products that are markedly porphyritic and rich in plagioclase, while the Lower Vents system (LV), opened at 2100 and 2550 m a.s.l., emitted products that are sparsely porphyritic with scarce plagioclase. In this study, the crystal size distributions (CSDs) of plagioclase were measured for a series of 14 samples collected from all the main flows of the 2001 eruption. The coefficient of R 2 determination was used to evaluate the goodness of fit of linear models to the CSDs, and the results are represented as a grid of R 2 values by using a numerical code developed ad hoc. R 2 diagrams suggest that the 2001 products can be separated into two main groups with slightly different characteristics: plagioclase CSDs from the UVs can be modeled by three straight lines with different slopes while the plagioclase CSDs from the LVs are largely concave. We have interpreted the CSDs of the UVs as representing three different populations of plagioclases: (i) the large phenocrysts (type I), which started to crystallize at lower cooling rate in a deep reservoir from 13 to 8 months before eruption onset; (ii) the phenocrysts (type II), which crystallized largely during continuous degassing in a shallow reservoir; and (iii) the microlites, which crystallized during magma ascent immediately prior to the eruption. The plagioclase CSD curves for the LVs lava are interpreted to reflect strong and rapid changes in undercooling induced by strong and sudden degassing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acocella V, Neri M (2003) What makes flank eruptions? the 2001 Etna eruption and its possible triggering mechanisms. Bull Volcanol 65:517–529. doi:10.1007/s00445-003-0280-3

    Article  Google Scholar 

  • Agostini C, Fortunati A, Arzilli F, Landi P, Carroll MR (2013) Kinetics of crystal evolution as a probe to magmatism at Stromboli (Aeolian Archipelago, Italy). Geochim Cosmochim Acta 110:135–151. doi:10.1016/j.gca.2013.02.027

    Article  Google Scholar 

  • Armienti P (2008) Decryption of igneous rock textures: crystal size distributions tools. In: Putirka KD, Tepley FJ (eds) Minerals, inclusions and volcanic processes, vol 69, Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, pp 623–649

    Google Scholar 

  • Armienti P, Pareschi MT, Innocenti F, Pompilio M (1994) Effect of magma storage and ascent on the kinetics of crystal growth. The case of 1991–93 Mt. Etna eruption. Contrib Mineral Petrol 115:402–414

    Article  Google Scholar 

  • Armienti A, Francalanci L, Landi P (2007) Textural effects of steady state behaviour of the Stromboli feeding system. J Volcanol Geotherm Res 160:86–98

    Article  Google Scholar 

  • Behncke B, Neri M (2003) The July–August 2001 eruption of Mt. Etna (Sicily). Bull Volcanol 65:461–476. doi:10.1007/s00445-003-0274-1

    Article  Google Scholar 

  • Bonaccorso A, Aloisi M, Mattia M (2002) Dike emplacement forerunning the Etna July 2001 eruption modelled through continuous tilt and GPS data. Geophys Res Lett 29:1624

    Article  Google Scholar 

  • Bonaccorso A, D’Amico S, Mattia M, Patanè D (2004) Intrusive mechanisms at Mt. Etna forerunning the July–August 2001 eruption from seismic and ground deformationdata. Pure Appl Geophys 161:1469–1487. doi:10.1007/s00024-004-2515-4

    Article  Google Scholar 

  • Bonforte A, Guglielmino F, Palano M, Puglisi G (2004) A syn-eruptive ground deformation episode measured by GPS, during the 2001 eruption on the upper southern flank of Mt. Etna. Bull Volcanol 66:336–341

    Article  Google Scholar 

  • Branca S, Del Carlo P (2005) Types of eruptions of Etna volcano AD 1670–2003: implications for short-term eruptive behaviour. Bull Volcanol 67:732–742

    Article  Google Scholar 

  • Brugger CR, Hammer JE (2010) Crystal size distribution analysis of plagioclase in experimentally decompressed hydrous rhyodacite magma. Earth Planet Sci Lett 300:246–254. doi:10.1016/j.epsl.2010.09.046

    Article  Google Scholar 

  • Cashman KV (1993) Relationship between plagioclase crystallisation and cooling rate in basaltic melts. Contrib Mineral Petrol 113:126–142

    Article  Google Scholar 

  • Cashman KV, Marsh BD (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization: II. Makaopuhi lava lake. Contrib Mineral Petrol 99:292–305

    Article  Google Scholar 

  • Clocchiatti R, Condomines M, Guènot N, Tanguy JC (2004) Magma changes at Mount Etna: the 2001 and 2002–2003 eruptions. Earth Plan Sci Lett 226:397–414. doi:10.1016/j.epsl.2004. 07.039

    Article  Google Scholar 

  • Conte AM, Perinelli C, Trigila R (2006) Cooling kinetics experiments on Stromboli lavas of different serial affinity giving variable crystal morphologies and phases composition. J Volcanol Geotherm Res 155:179–200

    Article  Google Scholar 

  • Corsaro RA, Miraglia L, Pompilio M (2007) Petrologic evidence of a complex plumbing system feeding the July–August 2001 eruption of Mt. Etna, Sicily, Italy. Bull Volcanol 69:401–421. doi:10.1007/s00445-006-0083-4

    Article  Google Scholar 

  • Couch S, Sparks RSJ, Carroll MR (2003) The kinetics of degassing-induced crystallization at Soufrie’re Hills Volcano, Montserrat. J Petrol 44:1477–1502

    Article  Google Scholar 

  • Favalli M, Fornaciai A, Pareschi MT (2009) LIDAR strip adjustment: application to volcanic areas. Geomorphology. doi:10.1016/j.geomorph.2009.04.010

    Google Scholar 

  • Ferlito C, Viccaro M, Cristofolini R (2008) Volatile-induced magma differentiation in the plumbing system of Mt. Etna volcano (Italy): evidence from glass in tephra of the 2001 eruption. Bull Volcanol 70:455–473. doi:10.1007/s00445-009-0290-x

    Article  Google Scholar 

  • Ferlito C, Viccaro M, Nicotra E, Cristofolini R (2012) Regimes of magma recharge and their control on the eruptive behaviour during the 2001–2005 period at Mt. Etna (Italy). Bull Volcanol 74:533–543. doi:10.1007/s00445-011-0537-1

    Article  Google Scholar 

  • Fornaciai A, Landi P, Armienti A (2009) Dissolution/crystallization kinetics recorded in the 2002–2003 lavas of Stromboli (Italy). Bull Volcanol 71:631–641. doi:10.1007/s00445-008-0249-3

    Article  Google Scholar 

  • Fornaciai A, Behncke B, Favalli M, Neri M, Tarquini S, Boschi E (2010) Detecting short-term evolution of Etnean scoria cones: a LIDAR-based approach. Bull Volcanol 72(10):1209–1222. doi:10.1007/s00445-010-0394-3

    Article  Google Scholar 

  • Giacomoni PP, Ferlito C, Coltorti M, Bonadiman C, Lanzafame G (2014) Plagioclase as archive of magma ascent dynamics on “open conduit” volcanoes: the 2001–2006 eruptive period at Mt. Etna. Earth Sci Rev 138:371–393

    Article  Google Scholar 

  • Hammer JE, Rutherford MJ (2002) An experimental study of the kinetics of decompression-induced crystallization in silicic melt. J Geophys Res 107:2021. doi:10.1029/2001JB000281

    Article  Google Scholar 

  • Higgins MD (1994) Determination of crystal morphology and size from bulk measurements on thin sections: numerical modelling. Am Mineral 79:113–119

    Google Scholar 

  • Higgins MD (1996) Magma dynamics beneath Kameni volcano, Greece, as revealed by crystal size and shape measurements. J Volcanol Geotherm Res 70:37–48

    Article  Google Scholar 

  • Higgins MD (2000) Measurement of crystal size distributions. Am Mineral 85(9):1105–1116

    Google Scholar 

  • Higgins MD (2002) A crystal size-distribution study of the Kiglapait layered mafic intrusion, Labrador, Canada: evidence for textural coarsening. Contrib Mineral Petrol 144:314–330

    Article  Google Scholar 

  • Higgins MD (2006) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Higgins MD (2009) The Cascadia megathrust earthquake of 1700 may have rejuvenated an isolated basalt volcano in western Canada: age and petrographic evidence. J Volcanol Geotherm Res 179:149–156. doi:10.1016/j.jvolgeores.2008.10.016

    Article  Google Scholar 

  • Higgins MD, Roberge J (2003) Crystal size distribution (CSD) of plagioclase and amphibole from Soufriere Hills volcano, Montserrat: evidence for dynamic crystallization/ textural coarsening cycles. J Petrol 44:1401–1411

    Article  Google Scholar 

  • Higgins MD, Roberge J (2007) Three magmatic components in the 1973 eruption of Eldfell volcano, Iceland: evidence from plagioclase crystal size distribution (CSD) and geochemistry. J Volcanol Geotherm Res 161:247–260

    Article  Google Scholar 

  • Jerram DA, Martin VM (2008) Understanding crystal populations and their significance through the magma plumbing system. Geol Soc Lond Spec Publ 304:133–148. doi:10.1144/SP304.7

    Article  Google Scholar 

  • Jerram DA, Mock A, Graham RD, Field M, Brown RJ (2009) 3D crystal size distributions: a case study on quantifying olivine populations in kimberlites. Lithos 112(1):223–235

    Article  Google Scholar 

  • Kirkpatrick RJ (1974) Kinetics of crystal growth in the system CaMgSi2O6-CaAl2SiO6. Am J Sci 274:215–242

    Article  Google Scholar 

  • Landi P, Francalanci L,Corsaro RA, Petrone CM, Fornaciai A, Carroll M, Nardini I, Miraglia L (2008) Textural and compositional characteristics of the lavas erupted in the December 2002–July 2003 effusive events at Stromboli, Aeolian Island, Italy. In: “The Stromboli Volcano—an integrated study of 2002–2003 eruption”, S Calvari, S Inguaggiato, G Puglisi, M Ripepe, M Rosi (edts), American Geophysical Union – Geophysical Monograph Series, vol.182, 213–228

  • Lanzafame G, Mollo S, Iezzi G, Ferlito C, Ventura G (2013) Unraveling the solidification path of a pahoehoe “cicirara” lava from Mount Etna volcano. Bull Volcanol 75:703–719. doi:10.1007/s00445-013-0703-8

    Article  Google Scholar 

  • Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lofgren GE (1974) An experimental study of plagioclase crystal morphology: isothermal crystallization. Am J Sci 274:243–273

    Article  Google Scholar 

  • Marsh BD (1988) Crystal size distributions (CSD) in rocks and the kinetics and dynamics of crystallization. I. Theory. Contrib Mineral Petrol 99:277–291

    Article  Google Scholar 

  • Marsh BD (1998) On the interpretation of crystal size distributions in magmatic systems. J Petrol 39:553–599

  • Martin VM, Holness MB, Pyle DM (2006) Textural analysis of magmatic enclaves from the Kameni Islands, Santorini, Greece. J Volcanol Geotherm Res 154:89–102

    Article  Google Scholar 

  • Métrich N, Allard P, Spilliaert N, Andronico D, Burton M (2004) 2001 flank eruption of the alkali- and volatile-rich primitive basalt responsible for Mount Etna’s evolution in the last three decades. Earth Planet Sci Lett 228:1–17. doi:10.1016/j.epsl. 2004.09.036

    Article  Google Scholar 

  • Mollo S, Giacomoni PP, Coltorti M, Ferlito C, Iezzi G, Scarlato P (2015) Reconstruction of magmatic variables governing recent Etnean eruptions: constraints from mineral chemistry and P-T-fO2-H2O modeling. Lithos 215:311–320

    Article  Google Scholar 

  • Morgan DJ, Jerram DA, Chertkoff DG, Davidson JP, Pearson DG, Kronz A, Nowell GM (2007) Combining CSD and isotopic microanalysis: magma supply and mixing processes at Stromboli Volcano, Aeolian Islands, Italy. Earth Planet Sci Lett 260:419–431

    Article  Google Scholar 

  • Muncill GE, Lasaga AC (1987) Crystal-growth kinetics of plagioclase in igneous systems: one atmosphere experiments and application of a simplified growth model. Am Mineral 72:299–311

    Google Scholar 

  • Murphy MD, Sparks RSJ, Barclay J, Carroll MR, Brewer TS (2000) Remobilization of andesite magma by intrusion of mafic magma at the Soufriere Hills volcano, Montserrat, West Indies. J Petrol 41(1):21–42

    Article  Google Scholar 

  • Nelson ST, Montana A (1992) Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am Mineral 77:1242–1249

    Google Scholar 

  • Ngonge ED, Archanjo CJ, Hollanda MHBM (2013) Plagioclase crystal size distribution in some tholeiitic mafic dykes in Cabo Frio-Buzios, Rio de Janeiro, Brazil. J Volcanol Geotherm Res 255:26–42

    Article  Google Scholar 

  • Orlando A, D’Orazio M, Armienti P, Borrini D (2008) Experimental determination of plagioclase and clinopyroxene crystal growth rates in an anhydrous trachybasalt from Mt Etna (Italy). Eur J Mineral 20:653–664. doi:10.1127/0935-1221/2008/0020-1841

    Article  Google Scholar 

  • Patanè D, Chiarabba C, Cocina O, De Gori P, Moretti M, Boschi E (2002) Tomographic images and 3D earthquake locations of the seismic swarm preceding the 2001 Mt. Etna eruption: evidence for a dyke intrusion. Geophys Res Lett 29 NO10, 101029/2001GLO14391

  • Patanè D, Chiarabba C, De Gori P, Bonaccorso A (2003a) Magma ascent and the pressurization of Mt Etna’s volcanic system. Science 299:2061–2063

    Article  Google Scholar 

  • Patanè D, Privitera E, Gresta G, Akinci A, Alparone A, Barberi G, Chiaraluce L, Cocina O, D’Amico S, De Gori P, Di Grazia G, Falsaperla S, Ferrari F, Gambino S, Giapiccolo E, Langer H, Maiolino V, Moretti M, Mostaccio A, Musumeci C, Piccinini D, Reitano D, Scarfì L, Spampanato S, Ursino A, Zuccarello L (2003b) Seismological constraints for the dike emplacement of July–August 2001 lateral eruption at Mt. Etna volcano, Italy. Ann Geophys 46:599–608

    Google Scholar 

  • Puglisi G, Bonforte A, Ferretti A, Guglielmino F, Palano M, Prati C (2008) Dynamics of Mount Etna before, during, and after the July-August 2001 eruption inferred from GPS and differential synthetic aperture radar interferometry data. J Geophys Res 113, B06405. doi:10.1029/2006JB004811

    Google Scholar 

  • Pupier E, Duchene S, Toplis MJ (2008) Experimental quantification of plagioclase crystal size distribution during cooling of a basaltic liquid. Contrib Mineral Petrol 155:555–570. doi:10.1007/s00410-007-0258-9

    Article  Google Scholar 

  • Resmini RG, Marsh BD (1995) Steady-state volcanism, paleoeffusion rates, and magma system volume inferred from plagioclase crystal size distributions in mafic lavas; Dome Mountain, Nevada. J Volcanol Geotherm Res 68(4):273–296

    Article  Google Scholar 

  • Salisbury MJ, Bohrson WA, Clynne MA, Ramos FC, Hoskin P (2008) Multiple plagioclase crystal populations identified by crystal size distribution and in situ chemical data: implications for timescales of magma chamber processes associated with the 1915 eruption of Lassen Peak, CA. J Petrol 49:1755–1780

    Article  Google Scholar 

  • Saraò A, Cocina O, Privitera E, Panza GF (2010) The dynamics of the 2001 Etna eruption as seen by full moment tensor analysis. Geophys J Int 181:951–965. doi:10.1111/j.1365-246X.2010.04547.x

    Google Scholar 

  • Shea T, Hammer JE (2013) Kinetics of cooling-and decompression-induced crystallization in hydrous mafic-intermediate magmas. J Volcanol Geotherm Res 260:127–145

    Article  Google Scholar 

  • Tarquini S, Favalli M (2010) A microscopic information system (MIS) for petrographic analysis. Comput Geosci 36:665–674

    Article  Google Scholar 

  • Viccaro M, Ferlito C, Cortesogno L, Cristofolini R, Gaggero L (2006) Magma mixing during the 2001 event at Mt. Etna (Italy): effects on the eruptive dynamics. J Volcanol Geotherm Res 149:139–159. doi:10.1016/j.jvolgeores.2005.06.004

    Article  Google Scholar 

  • Viccaro M, Ferlito C, Cristofolini R (2008) Cristofolini Complex evolution processes in the upper feeding system of Mt. Etna (Italy) as revealed by the geochemistry of recent lavas. Per Mineral 77(3):21–42

  • Viccaro M, Giacomoni PP, Ferlito C, Cristofolini R (2010) Dynamics of magma supply at Mt. Etna Volcano (Southern Italy) as revealed by textural and compositional features of plagioclase phenocrysts. Lithos 116:77–91

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Samantha Engwell for reviewing the English style and grammar. We gratefully acknowledge the researchers involved in the NEMOH European project for their advice and fruitful discussions. AF has partially carried out this work in the frame of Dottorato di Geofisica, Dipartimento di Fisica e Astronomia, University of Bologna. The manuscript has benefited substantially from the critical reviews by Michael D. Higgins and Thomas Shea, although the interpretations presented here remain the sole responsibility of the authors. Special thanks also to Luca Nannipieri for building the webpage: http://r2.pi.ingv.it.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Fornaciai.

Additional information

Editorial responsibility: P. Wallace

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fornaciai, A., Perinelli, C., Armienti, P. et al. Crystal size distributions of plagioclase in lavas from the July–August 2001 Mount Etna eruption. Bull Volcanol 77, 70 (2015). https://doi.org/10.1007/s00445-015-0953-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-015-0953-8

Keywords

Navigation