Bulletin of Volcanology

, 77:68 | Cite as

Probabilistic analysis of rain-triggered lahar initiation at Tungurahua volcano

Research Article

Abstract

Semi-continuous production of pyroclastic material by intermittent strombolian, vulcanian and sub-plinian eruptions at Volcán Tungurahua, Ecuador has created a persistent rain-triggered lahar hazard during the 1999–present eruptive episode. Lahars threaten the city of Baños, which lies approximately 8 km from the crater, as well as other villages and vital infrastructure situated in close proximity to the dense radial drainage network of the volcano. This study analyses the initiation of rain-triggered lahars and the influence of antecedent rainfall on this process in two northern instrumented drainages, La Pampa and the Vazcun. Analysis of lahar-triggering rainfall intensity and duration between March 2012 and June 2013 yields a power-law relationship, whilst receiver operating characteristic (ROC) analysis indicates that peak rainfall intensity (10, 30 and 60 min) is the most effective single predictor of lahar occurrence. The probability of a lahar exceeding a pre-defined magnitude increases with peak rainfall intensity. Incorporation of antecedent rainfall (24 h and 3, 5 and 7 days) as a secondary variable significantly impacts lahar probabilities, particularly during moderate–high-intensity rainfall events. The resultant two- and three-dimensional lahar probability matrices are applied to rainfall data between 1st July and 31st December 2013 with the aim of predicting lahar occurrence. Composite lahar indicators comprised from the mean lahar probability estimates of individual matrices are shown to perform this task most effectively. ROC analysis indicates a probability > 80 % that these composite indicators will generate a higher estimated lahar probability for a randomly selected lahar event than a randomly selected non-lahar event. This method provides an average of 24 min of additional warning time compared with the current acoustic flow monitors (AFMs) used for lahar detection, effectively doubling warning times for key downstream infrastructure in the two drainages. Ultimately, this method of lahar analysis could be used to construct real-time probabilistic rain-triggered lahar forecasts as an aid to current lahar hazard mitigation techniques at any location with a significant rain-triggered lahar hazard and a basic instrumental setup.

Keywords

AFMs Lahar ROC analysis Volcán Tungurahua Rainfall runoff Volcaniclastic sedimentation Probability 

References

  1. Alexander J, Barclay J, Susnik J, Loughlin SC, Herd RA, Darnell A, Crosweller S (2010) Sediment-charged flash floods on Montserrat: the influence of synchronous tephra fall and varying extent of vegetation damage. J Volcanol Geotherm Res 194:127–138. doi:10.1016/j.jvolgeores.2010.05.002 CrossRefGoogle Scholar
  2. Arboleda R, Martinez M (1996) 1992 Lahars in the Pasig-Potrero river system. In: Newhall C, Punongbayan R (eds) Fire and mud, eruptions and lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 1045–1055Google Scholar
  3. Barclay J, Alexander J, Susnik J (2007) Rainfall-induced lahars in the Belham Valley, Montserrat, West Indies. J Geol Soc 164:815–827. doi:10.1144/0016-76492006-078 CrossRefGoogle Scholar
  4. Bernard J, Kelfoun K, Le Pennec JL, Vargas SV (2014) Pyroclastic flow erosion and bulking processes: comparing field-based vs. modeling results at Tungurahua volcano, Ecuador. Bull Volcanol 76. doi: 10.1007/S00445-014-0858-Y
  5. Biggs J, Mothes P, Ruiz M, Amelung F, Dixon TH, Baker S, Hong SH (2010) Stratovolcano growth by co-eruptive intrusion: The 2008 eruption of Tungurahua Ecuador. Geophys Res Lett 37. doi: 10.1029/2010gl044942
  6. Bradford JM, Ferris JE, Remley PA (1987a) Interrill soil erosion processes: I. Effect of surface sealing on infiltration, runoff, and soil splash detachment. Soil Sci Soc Am J 51:1566–1571. doi:10.2136/sssaj1987.03615995005100060029x CrossRefGoogle Scholar
  7. Bradford JM, Ferris JE, Remley PA (1987b) Interrill soil erosion processes: II. Relationship of splash detachment to soil properties. Soil Sci Soc Am J 51:1571–1575. doi:10.2136/sssaj1987.03615995005100060030x CrossRefGoogle Scholar
  8. Burtin A, Bollinger L, Vergne J, Cattin R, Nabelek JL (2008) Spectral analysis of seismic noise induced by rivers: A new tool to monitor spatiotemporal changes in stream hydrodynamics. J Geophys Res Solid Earth 113. doi: 10.1029/2007jb005034
  9. Capra L, Borselli L, Varley N, Gavilanes-Ruiz JC, Norini G, Sarocchi D, Caballero L, Cortes A (2010) Rainfall-triggered lahars at Volcán de Colima, Mexico: surface hydro-repellency as initiation process. J Volcanol Geotherm Res 189:105–117. doi:10.1016/j.jvolgeores.2009.10.014 CrossRefGoogle Scholar
  10. Cole SE, Cronin SJ, Sherburn S, Manville V (2009) Seismic signals of snow-slurry lahars in motion: 25 September 2007, Mt Ruapehu, New Zealand. Geophys Res Lett 36. doi: 10.1029/2009gl038030
  11. Collins BD, Dunne T (1986) Erosion of Tephra from the 1980 eruption of Mount St Helens. Geol Soc Am Bull 97:896–905. doi:10.1130/0016-7606(1986)97<896:Eotfte>2.0.Co;2 CrossRefGoogle Scholar
  12. Collins B, Dunne T, Lehre A (1983) Erosion of tephra-covered hillslopes North of Mount St. Helens, Washington: May 1980-May 1981. Zeitschrift für Geomorphologische Naturwissenschaftliche Forschung 16:103–121Google Scholar
  13. Craddock RA, Howard AD, Irwin RP, Tooth S, Williams RME, Chu P-S (2012) Drainage network development in the Keanakāko‘i tephra, Kīlauea Volcano, Hawai‘i: Implications for fluvial erosion and valley network formation on early Mars. J Geophys Res 117. doi: 10.1029/2012je004074
  14. Crosta GB, Dal Negro P (2003) Observations and modelling of soil slip-debris flow initiation processes in pyroclastic deposits: the Sarno 1998 event. Nat Hazards Earth Syst Sci 3:53–69. doi:10.5194/nhess-3-53-2003 CrossRefGoogle Scholar
  15. Cummans J (1980) Mudflows resulting from the May 18, 1980, eruption of Mount St. Helens, Washington. Geol Surv Circ 850-BGoogle Scholar
  16. de Bélizal E, Lavigne F, Hadmoko DS, Degeai J-P, Dipayana GA, Mutaqin BW, Marfai MA, Coquet M, Mauff BL, Robin A-K, Vidal C, Cholik N, Aisyah N (2013) Rain-triggered lahars following the 2010 eruption of Merapi volcano, Indonesia: a major risk. J Volcanol Geotherm Res 261:330–347. doi:10.1016/j.jvolgeores.2013.01.010 CrossRefGoogle Scholar
  17. Donovan A, Eiser J, Sparks R (2014) Scientists’ views about lay perceptions of volcanic hazard and risk. J Appl Volcanol 3:15. doi:10.1186/s13617-014-0015-5 CrossRefGoogle Scholar
  18. Douillet GA, Pacheco DA, Kueppers U, Letort J, Tsang-Hin-Sun E, Bustillos J, Hall M, Ramon P, Dingwell DB (2013a) Dune bedforms produced by dilute pyroclastic density currents from the August 2006 eruption of Tungurahua volcano, Ecuador. Bull Volcanol 75. doi: 10.1007/S00445-013-0762-X
  19. Douillet GA, Tsang-Hin-Sun E, Kueppers U, Letort J, Pacheco DA, Goldstein F, Von Aulock F, Lavallee Y, Hanson JB, Bustillos J, Robin C, Ramon P, Hall M, Dingwell DB (2013b) Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador. Bull Volcanol 75. doi: 10.1007/S00445-013-0765-7
  20. Doyle E, Cronin S, Cole S, Thouret J (2009) The challenges of incorperating temporal and spatial changes into numerical models of Lahars. Paper presented at the 18th World IMACS Congress and MODSIM09 International Congress on Modelling and SimulationGoogle Scholar
  21. Doyle EE, Cronin SJ, Cole SE, Thouret JC (2010) The coalescence and organization of lahars at Semeru volcano, Indonesia. Bull Volcanol 72:961–970. doi:10.1007/s00445-010-0381-8 CrossRefGoogle Scholar
  22. Druzdzel MJ, van der Gaag LC (2000) Building probabilistic networks: “where do the numbers come from?” Guest editors’ introduction. IEEE Trans Knowl Data Eng 12:481–486. doi:10.1109/tkde.2000.868901 CrossRefGoogle Scholar
  23. Dumaisnil C, Thouret JC, Chambon G, Doyle EE, Cronin SJ, Surono M (2010) Hydraulic, physical and rheological characteristics of rain-triggered lahars at Semeru volcano, Indonesia. Earth Surf Process Landf 35:1573–1590. doi:10.1002/Esp.2003 CrossRefGoogle Scholar
  24. Eychenne J, Le Pennec JL, Troncoso L, Gouhier M, Nedelec JM (2012) Causes and consequences of bimodal grain-size distribution of tephra fall deposited during the August 2006 Tungurahua eruption (Ecuador). Bull Volcanol 74:187–205. doi:10.1007/s00445-011-0517-5 CrossRefGoogle Scholar
  25. Fagents SA, Baloga SM (2006) Toward a model for the bulking and debulking of lahars. J Geophys Res Solid Earth 111. doi: 10.1029/2005jb003986
  26. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874. doi:10.1016/j.patrec.2005.10.010 CrossRefGoogle Scholar
  27. Fiksdal A (1982) infiltration rates of undisturbed and disturbed Mount St. Helens tephra deposits. In: Keller SAC (ed) Mount St. Helens—one year later. Eastern Washington University Press, CheneyGoogle Scholar
  28. Folsom M (1986) Mount St. Helens tephra on range and forest lands of Eastern Washington-local erosion and redeposition. In: Keller SAC (ed) Mount St. Helens—five years later. Eastern Washington University Press, CheneyGoogle Scholar
  29. Garreaud RD (2009) The Andes climate and weather. Adv Geosci 22:3–11. doi:10.5194/adgeo-22-3-2009 CrossRefGoogle Scholar
  30. Gómez JA, Darboux F, Nearing MA (2003) Development and evolution of rill networks under simulated rainfall. Water Resour Res 39. doi: 10.1029/2002wr001437
  31. Hall M, Robin C, Beate B, Mothes P, Monzier M (1999) Tungurahua volcano, Ecuador: structure, eruptive history and hazards. J Volcanol Geotherm Res 91:1–21. doi:10.1016/S0377-0273(99)00047-5 CrossRefGoogle Scholar
  32. Hall ML, Steele AL, Mothes PA, Ruiz MC (2013) Pyroclastic density currents (PDC) of the 16–17 August 2006 eruptions of Tungurahua volcano, Ecuador: geophysical registry and characteristics. J Volcanol Geotherm Res 265:78–93. doi:10.1016/j.jvolgeores.2013.08.011 CrossRefGoogle Scholar
  33. Hikida M, Moriyama M, Nagai Y (2007) Warning system for debris flow hazards at Sakurajima Volcano, Japan. Debris-flow hazards mitigation: mechanics, prediction, and assessment. Millpress Science Publishers, RotterdamGoogle Scholar
  34. Hodgson KA, Manville VR (1999) Sedimentology and flow behavior of a rain-triggered lahar, Mangatoetoenui Stream, Ruapehu volcano, New Zealand. Geol Soc Am Bull 111:743–754. doi:10.1130/0016-7606(1999)111<0743:safboa>2.3.co;2 CrossRefGoogle Scholar
  35. Horton RE (1945) Erosional development of streams and their drainage basins; hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275. doi:10.1130/0016-7606(1945)56[275:edosat]2.0.co;2 CrossRefGoogle Scholar
  36. Huang CJ, Shieh CL, Yin HY (2004) Laboratory study of the underground sound generated by debris flows. J Geophys Res Earth 109. doi: 10.1029/2003jf000048
  37. Hunink JE, Immerzeel WW, Droogers P (2014) A high-resolution precipitation 2-step mapping procedure (HiP2P): development and application to a tropical mountainous area. Remote Sens Environ 140:179–188. doi:10.1016/j.rse.2013.08.036 CrossRefGoogle Scholar
  38. Iverson RM, Lahusen RG (1989) Dynamic pore-pressure fluctuations in rapidly shearing granular materials. Science 246:796–799. doi:10.1126/science.246.4931.796 CrossRefGoogle Scholar
  39. Iverson RM, Reid ME, Logan M, LaHusen RG, Godt JW, Griswold JP (2010) Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment. Nat Geosci 4:116–121. doi:10.1038/ngeo1040 CrossRefGoogle Scholar
  40. Janda R, Daag A, Delos Reyes P, Newhall C, Pierson T, Punongbayan R, Rodolfo K, Solidum R, Umbal J (1996) Assessment and response to lahar hazard around Mt Pinatubo, 1991 to 1993. In: Newhall C, Punongbayan R (eds) Fire and mud, eruptions and lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 107–139Google Scholar
  41. Kean JW, Staley DM, Cannon SH (2011) In situ measurements of post-fire debris flows in southern California: comparisons of the timing and magnitude of 24 debris-flow events with rainfall and soil moisture conditions. J Geophys Res Earth. 116. doi: 10.1029/2011jf002005
  42. Kilgour G, Manville V, Della Pasqua F, Graettinger A, Hodgson KA, Jolly GE (2010) The 25 September 2007 eruption of Mount Ruapehu, New Zealand: directed ballistics, surtseyan jets, and ice-slurry lahars. J Volcanol Geotherm Res 191:1–14. doi:10.1016/j.jvolgeores.2009.10.015 CrossRefGoogle Scholar
  43. Kumagai H, Palacios P, Maeda T, Castillo DB, Nakano M (2009) Seismic tracking of lahars using tremor signals. J Volcanol Geotherm Res 183:112–121. doi:10.1016/j.jvolgeores.2009.03.010 CrossRefGoogle Scholar
  44. Lavigne F, Suwa H (2004) Contrasts between debris flows, hyperconcentrated flows and stream flows at a channel of Mount Semeru, East Java, Indonesia. Geomorphology 61:41–58. doi:10.1016/j.geomorph.2003.11.005 CrossRefGoogle Scholar
  45. Lavigne F, Thouret JC (2003) Sediment transportation and deposition by rain-triggered lahars at Merapi Volcano, Central Java, Indonesia. Geomorphology 49:45–69. doi:10.1016/S0169-555x(02)00160-5 CrossRefGoogle Scholar
  46. Lavigne F, Thouret JC, Voight B, Suwa H, Sumaryono A (2000a) Lahars at Merapi volcano, Central Java: an overview. J Volcanol Geotherm Res 100:423–456. doi:10.1016/S0377-0273(00)00150-5 CrossRefGoogle Scholar
  47. Lavigne F, Thouret JC, Voight B, Young K, LaHusen R, Marso J, Suwa H, Sumaryono A, Sayudi DS, Dejean M (2000b) Instrumental lahar monitoring at Merapi volcano, Central Java, Indonesia. J Volcanol Geotherm Res 100:457–478. doi:10.1016/S0377-0273(00)00151-7 CrossRefGoogle Scholar
  48. Lavigne F, Thouret JC, Hadmoko D, Sukatja B (2007) Lahars in Java: initiations, dynamic, hazard assessment and deposition processes. Forum Geogr 21:17–32Google Scholar
  49. Le Pennec JL, Jaya D, Samaniego P, Ramón P, Moreno Yánez S, Egred J, van der Plicht J (2008) The AD 1300–1700 eruptive periods at Tungurahua volcano, Ecuador, revealed by historical narratives, stratigraphy and radiocarbon dating. J Volcanol Geotherm Res 176:70–81. doi:10.1016/j.jvolgeores.2008.05.019 CrossRefGoogle Scholar
  50. Le Pennec J-L, Ruiz GA, Ramón P, Palacios E, Mothes P, Yepes H (2012) Impact of tephra falls on Andean communities: the influences of eruption size and weather conditions during the 1999–2001 activity of Tungurahua volcano, Ecuador. J Volcanol Geotherm Res 217–218:91–103. doi:10.1016/j.jvolgeores.2011.06.011 CrossRefGoogle Scholar
  51. Leavesley G, Lusby G, Lichty R (1989) Infiltration and erosion characteristics of selected tephra deposits from the 1980 eruption of Mt St Helens, Washington, USA. Hydrol Sci 34:339–353CrossRefGoogle Scholar
  52. Lowe DR, Williams SN, Leigh H, Connort CB, Gemmell JB, Stoiber RE (1986) Lahars initiated by the 13 November 1985 eruption of Nevado del Ruiz, Colombia. Nature 324:51–53. doi:10.1038/324051a0 CrossRefGoogle Scholar
  53. Major JJ, Newhall CG (1989) Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods. Bull Volcanol 52:1–27. doi:10.1007/bf00641384 CrossRefGoogle Scholar
  54. Major J, Yamakoshi T (2005) Decadal-scale change of infiltration characteristics of a tephra-mantled hillslope at Mount St Helens, Washington. Hydrol Process 19:3621–3630. doi:10.1002/Hyp.5863 CrossRefGoogle Scholar
  55. Major J, Janda R, Daag A (1996) Watershed disturbance and lahars on the east side of Mount Pinatubo during the Mid-June 1991 eruptions. In: Newhall C, Punongbayan R (eds) Fire and mud, eruptions and lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 895–921Google Scholar
  56. Manville V, Cronin SJ (2007) Breakout lahar from New Zealand’s crater lake. Eos Trans Am Geophys Union 88:441. doi:10.1029/2007eo430001 CrossRefGoogle Scholar
  57. Manville V, Hodgson K, Houghton B, Keys J, White J (2000) Tephra, snow and water: complex sedimentary responses at an active snow-capped stratovolcano, Ruapehu, New Zealand. Bull Volcanol 62:278–293. doi:10.1007/s004450000096 CrossRefGoogle Scholar
  58. Marchi L, Arattano M, Deganutti AM (2002) Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 46:1–17. doi:10.1016/S0169-555x(01)00162-3 CrossRefGoogle Scholar
  59. Marcial S, Melosantos A, Hadley K, LaHusen R, Marso J (1996) Instrumental lahar monitoring at Mount Pinatubo. In: Newhall C, Punongbayan R (eds) Fire and mud, eruptions and lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 1015–1023Google Scholar
  60. Martinez M, Arboleda R, Delos Reyes P, Gabinete E, Dolan M (1996) Observations of 1992 lahars along the Sacobia-Bamban river system. In: Newhall C, Punongbayan R (eds) Fire and mud, eruptions and lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 1033–1045Google Scholar
  61. Massey CI, Manville V, Hancox GH, Keys HJ, Lawrence C, McSaveney M (2009) Out-burst flood (lahar) triggered by retrogressive landsliding, 18 March 2007 at Mt Ruapehu, New Zealand—a successful early warning. Landslides 7:303–315. doi:10.1007/s10346-009-0180-5 CrossRefGoogle Scholar
  62. Murata KJ, Dondoli C, Saenz R (1966) The 1963–65 eruption of Irazú volcano, Costa Rica (the period of March 1963 to October 1964). Bull Volcanol 29:763–793. doi:10.1007/bf02597194 CrossRefGoogle Scholar
  63. Myers ML, Geist DJ, Rowe MC, Harpp KS, Wallace PJ, Dufek J (2014) Replenishment of volatile-rich mafic magma into a degassed chamber drives mixing and eruption of Tungurahua volcano. Bull Volcanol 76. doi: 10.1007/S00445-014-0872-0
  64. Ogawa Y, Daimaru H, Shimizu A (2007) Experimental study of post-eruption overland flow and sediment load from slopes overlain by pyroclastic-flow deposits, Unzen volcano, Japan. Geomorphologie:237-246Google Scholar
  65. Okano K, Suwa H, Kanno T (2012) Characterization of debris flows by rainstorm condition at a torrent on the Mount Yakedake volcano, Japan. Geomorphology 136:88–94. doi:10.1016/j.geomorph.2011.04.006 CrossRefGoogle Scholar
  66. Pierson TC, Janda RJ, Thouret J-C, Borrero CA (1990) Perturbation and melting of snow and ice by the 13 November 1985 eruption of Nevado del Ruiz, Colombia, and consequent mobilization, flow and deposition of lahars. J Volcanol Geotherm Res 41:17–66. doi:10.1016/0377-0273(90)90082-q CrossRefGoogle Scholar
  67. Pierson T, Daag A, Delos Reyes P, TM R, Solidum R, Tubianosa B (1996) Flow and deposition of posteruption hot lahars on the east side of Mount Pinatubo, July-October 1991. In: Newhall C, Punongbayan R (eds) Fire and mud, eruptions and lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 921–951Google Scholar
  68. Reid M, Iverson R, Logan M, Lahusen RG, Godt J, Griswold J (2011) Entrainment of bed sediment by debris flows: results from large scale experiments. Paper presented at the Fifth International Conference on debris-flow hazards mitigation, mechanics, prediction and assessment, Casa Editrice Universita La Sapienza, RomeGoogle Scholar
  69. Rodolfo K, Arguden A (1991) Rain-lahar generation and sediment-delivery systems at Mayon Volcano, Philippines. In: RV F, GA S (eds) Sedimentation in volcanic settings, vol 45. Society of Economic Paleontologists and Mineralogists, Special Publications, pp 71–88Google Scholar
  70. Rodolfo K, Umbal J, Alonso R, Remotigue C, Paladio-Melosantos L, Salvador J, Evangelista D, Miller Y (1996) Two years of lahars on the Western Flank of Mount Pinatubo: initiation, flow processes, deposits, and attendant geomorphic and hydraulic changes. In: Newhall C, Punongbayan R (eds) Fire and mud, eruptions and lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 989–1015Google Scholar
  71. Samaniego P, Le Pennec JL, Robin C, Hidalgo S (2011) Petrological analysis of the pre-eruptive magmatic process prior to the 2006 explosive eruptions at Tungurahua volcano (Ecuador). J Volcanol Geotherm Res 199:69–84. doi:10.1016/j.jvolgeores.2010.10.010 CrossRefGoogle Scholar
  72. Schneider D, Bartelt P, Caplan-Auerbach J, Christen M, Huggel C, McArdell BW (2010) Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model. J Geophys Res Earth 115. doi: 10.1029/2010jf001734
  73. Scott K, Janda R, De La Cruz E, Gabinete E, Eto I, Isada M, Sexon M, Hadley K (1996) Channel and sedimentation responses to large volumes of 1991 volcanic deposits on the East Flank of Mt Pinatubo. In: Newhall C, Punongbayan R (eds) Fire and mud, eruptions and lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 971–989Google Scholar
  74. Smith GA, Fritz WJ (1989) Volcanic influences on terrestrial sedimentation. Geology 17:375–376CrossRefGoogle Scholar
  75. Sorenson O, Rose W, Jaya D (2003) Lahar hazard modelling at Tungurahua, Ecuador. Paper presented at the GS - AGU - EUG Joint Assembly, Nice, FranceGoogle Scholar
  76. Stone J, Barclay J, Simmons P, Cole PD, Loughlin SC, Ramón P, Mothes P (2014) Risk reduction through community-based monitoring: the vigías of Tungurahua, Ecuador. J Appl Volcanol 3:11. doi:10.1186/s13617-014-0011-9 Google Scholar
  77. Swets J, Dawes R, Monahan J (1988) Better decisions through science. Sci Am 240:1285–1293Google Scholar
  78. Todisco F (2014) The internal structure of erosive and non-erosive storm events for interpretation of erosive processes and rainfall simulation. J Hydrol 519:3651–3663. doi:10.1016/j.jhydrol.2014.11.002 CrossRefGoogle Scholar
  79. Tungol N, Regalado T (1996) Rainfall, acoustic flow monitor records, and observed lahars of the Sacobia River in 1992. In: Newhall C, Punongbayan R (eds) Fire and Mud, Eruptions and Lahars of Mt Pinatubo, Philippines. PHIVOLCS/University of Washington Press, Quezon City/Seattle, pp 1023–1033Google Scholar
  80. Van Westen C, Daag A (2005) Analysing the relation between rainfall characteristics and lahar Activity at Mt Pinatubo, Philippines. Earth Surf Process Landf 30:1663–1674CrossRefGoogle Scholar
  81. Waldron H (1967) Debris flow and erosion control problems caused by the ash eruptions of Irazu. Contrib Gen Geol 1966:1241–1Google Scholar
  82. Wang L, Shi ZH, Wang J, Fang NF, Wu GL, Zhang HY (2014) Rainfall kinetic energy controlling erosion processes and sediment sorting on steep hillslopes: a case study of clay loam soil from the Loess Plateau, China. J Hydrol 512:168–176. doi:10.1016/j.jhydrol.2014.02.066 CrossRefGoogle Scholar
  83. Waythomas CF, Pierson TC, Major JJ, Scott WE (2013) Voluminous ice-rich and water-rich lahars generated during the 2009 eruption of Redoubt Volcano, Alaska. J Volcanol Geotherm Res 259:389–413. doi:10.1016/j.jvolgeores.2012.05.012 CrossRefGoogle Scholar
  84. Williams R, Stinton AJ, Sheridan MF (2008) Evaluation of the Titan2D two-phase flow model using an actual event: case study of the 2005 Vazcun Valley Lahar. J Volcanol Geotherm Res 177:760–766. doi:10.1016/j.jvolgeores.2008.01.045 CrossRefGoogle Scholar
  85. Wischmeier W, Smith D (1978) Prediciting rainfall erosion losses—a guide to conservation planning. Agricultural Handbooks (USA) No. 537. US Department of Agriculture, Washington DCGoogle Scholar
  86. Yamakoshi T, Suwa H (2000) Post-eruption characteristics of surface runoff and sediment discharge on the slopes of pyroclastic-flow deposits, Mt Unzen, Japan. Trans Jpn Geomorphol Union 21:469–497Google Scholar
  87. Zanchetta G, Sulpizio R, Pareschi MT, Leoni FM, Santacroce R (2004) Characteristics of May 5–6, 1998 volcaniclastic debris flows in the Sarno area (Campania, southern Italy): relationships to structural damage and hazard zonation. J Volcanol Geotherm Res 133:377–393. doi:10.1016/s0377-0273(03)00409-8 CrossRefGoogle Scholar
  88. Zobin VM, Plascencia I, Reyes G, Navarro C (2009) The characteristics of seismic signals produced by lahars and pyroclastic flows: volcán de Colima, México. J Volcanol Geotherm Res 179:157–167. doi:10.1016/j.jvolgeores.2008.11.001 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Earth and EnvironmentUniversity of LeedsLeedsUK
  2. 2.Instituto Geofisico, Escuela Politécnica NacionalQuitoEcuador

Personalised recommendations