Skip to main content

Dynamics and tephra dispersal of Violent Strombolian eruptions at Vesuvius: insights from field data, wind reconstruction and numerical simulation of the 1906 event

Abstract

Mt. Vesuvius is one of the most studied volcanoes in the world and its proximity to an extremely populated area makes it also one of the most threatening. Violent Strombolian (VS) events have occurred in the most recent history of the volcano, and they are the type most likely to occur in case of reactivation of the volcano in the near future. In order to investigate the dynamics and hazard of this type of eruption, we performed new field and laboratory work and numerical simulations of plume dynamics, fallout and tephra dispersal associated with such eruptions. Attention was specifically focused on the 1906 eruption, a recent and well-studied VS event. Based on new field analyses and historical observations, we reconstructed the temporal evolution of eruption source conditions during the event. The reconstructed explosive phase of the eruption is inferred to have been 8 days long and characterized by two distinct stages: a former short and intense period with sustained convective plume fed by powerful lava fountains (20 h) followed by a prolonged and less intense period of ash emission (172 h). The total grain-size distributions for both phases, used as inputs to the model, were obtained by field work and laboratory analyses. Based on these new volcanological data and reconstruction of wind field direction and intensity, partially derived from historical sources, the 1906 event was numerically simulated and results compared to deposit distributions. The modelling outcomes for the ash emission phase provide a better agreement with the measured tephra mass load for a simulation run in which ash aggregation (described by the models of Cornell et al. J Volcanol Geotherm Res 17:89–109, 1983, and Biass et al. Nat Hazard Earth Syst Sci 14:2265–2287, 2014) is specifically taken into account, confirming the importance of this process during tephra dispersal. The aggregation model that best fits the simulated results to the measured ground loadings has 80 % of particles Φ ≥ 4 that aggregate uniformly in the range Φ = −1 to 3. Two additional simulations of a VS event were carried out by using meteorological data of two specific periods to exemplify weather’s potential on impacts of such eruptions, particularly tephra loading, on the surrounding areas. The model outcomes clearly highlight the major effects of differences in local meteorology on plume dynamics and ash dispersal and the key role of wind shear in determining the cumulative thickness of ground deposits. Results also show that, due to the long duration of this kind of eruption and the large variability in zonal winds at this latitude, ash dispersal and fallout from VS events at Vesuvius represent a probable hazard for all of the territory near Vesuvius, including the city of Naples, where cumulative tephra loadings might reach critical thresholds for roof collapse and infrastructure damage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Andronico D, Cioni R (2002) Contrasting styles of Mount Vesuvius activity in the period between the Avellino and Pompeii plinian eruptions, and some implications for assessment of future hazards. Bull Volcanol 64:372–391. doi:10.1007/s00445-002-0215-4

    Article  Google Scholar 

  • Andronico D, Cristaldi A, Scollo S (2008a) The 4–5 September 2007 lava fountain at South-East Crater of Mt Etna, Italy. J Volcanol Geotherm Res 173:325–328

    Article  Google Scholar 

  • Andronico D, Scollo S, Caruso S, Cristaldi A (2008b) The 2002–03 Etna explosive activity: tephra dispersal and features of the deposits. J Geophys Res 113:B04209

    Google Scholar 

  • Arrighi S, Principe C, Rosi M (2001) Violent Strombolian and subplinian eruptions at Vesuvius during post-1631 activity. Bull Volcanol. doi:10.1007/s004450100130

    Google Scholar 

  • Barberi F, Cioni R, Rosi M, Santacroce R, Sbrana A, Vecci R (1989) Magmatic and phreatomagmatic phases in explosive eruptions of Vesuvius as deduced by grain-size and component analysis of the pyroclastic deposits. J Volcanol Geotherm Res 38:287–307

    Article  Google Scholar 

  • Barsotti S, Neri A (2008) The VOL-CALPUFF model for atmospheric ash dispersal: 2. Application to the weak Mount Etna plume of July 2001. J Geophys Res 113:B03209. doi:10.1029/2006JB004624

    Google Scholar 

  • Barsotti S, Neri A, Scire JS (2008) The VOL-CALPUFF model for atmospheric ash dispersal: 1. Approach and physical formulation. J Geophys Res 113:B03208. doi:10.1029/2006JB004623

    Google Scholar 

  • Barsotti S, Andronico D, Neri A, Del Carlo P, Baxter PJ, Aspinall W, Hincks T (2010) Quantitative assessment of volcanic ash hazards for health and infrastructure at Mt. Etna (Italy) by numerical simulation. J Volcanol Geotherm Res 192:85–96. doi:10.1016/j.jvolgeores.2010.02.011

    Article  Google Scholar 

  • Barsotti S, Bignami C, Buongiorno MF, Corradini S, Doumaz F, Guerrieri L, Merucci L, Musacchio M, Nannipieri L, Neri A, Piscini A, Silvestri M, Spanu A, Spinetti C, Stramondo S, Wegmuller U (2011) SAFER Response to Eyjafjallajökull and Merapi volcanic eruptions. In: ‘Let’s embrace space’ Space Research achievements under the 7th Framework Programme, Edit by European Commission, DG Enterprise and Industry

  • Bertagnini A, Landi P, Santacroce R, Sbrana A (1991) The 1906 eruption of Vesuvius: from magmatic to phreato-magmatic activity through the flashing of a shallow depth hydrothermal system. Bull Volcanol 53:517–532

    Article  Google Scholar 

  • Biass S, Scaini C, Bonadonna C, Folch A, Smith K, Höskuldsson A (2014) A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes—part I: hazard assessment. Nat Hazards Earth Syst Sci 14:2265–2287. doi:10.5194/nhess-14-2265-2014

    Article  Google Scholar 

  • Bonadonna C, Phillips JC, Houghton BF (2005) Modeling tephra fall from a Ruapehu weak plume eruption. J Geophys Res 110(B08209) doi:10.1029/2004JB003515

  • Bursik M (2001) Effect of wind on the rise height of volcanic plumes. Geophys Res Lett 18:3621–3624

    Article  Google Scholar 

  • Chester DK, Duncan AM (2007) Lieutenant-Colonel Delme-Redcliffe’s report on the 1906 eruption of Vesuvius, Italy. J Volcanol Geotherm Res 166:204–216. doi:10.1016/j.jvolgeores.2007.08.001

    Article  Google Scholar 

  • Cioni R, Santacroce R, Sbrana A (1999) Pyroclastic deposits as a guide for reconstructing the multi-stage evolution of the Somma-Vesuvius Caldera. Bull Volcanol 60:207–222

    Article  Google Scholar 

  • Cioni R, Longo A, Macedonio G, Santacroce R, Sbrana A, Sulpizio R, Andronico D (2003) Assessing pyroclastic fall hazard through field data and numerical simulations: Example from Vesuvius. J Geophys Res 108:B2. doi:10.1029/2001JB000642

    Google Scholar 

  • Cioni R, Bertagnini A, Santacroce R, Andronico D (2008) Explosive activity and eruption scenarios at Somma-Vesuvius (Italy): towards a new classification scheme. J Volcanol Geotherm Res 178(3):331–346. doi:10.1016/j.jvolgeores.2008.04.024

    Article  Google Scholar 

  • Cioni R, Bertagnini A, D’Oriano C, Pompilio M (2010) Past and present mid-intensity explosive eruptions of Italian volcanoes and their impact on human activity. JVE 36:23

    Google Scholar 

  • D’Oriano C, Cioni R, Bertagnini A, Andronico D, Cole PD (2011) Dynamics of ash-dominated eruptions at Vesuvius: the post-512 AD AS1a event. Bull Volcanol 73:699–715. doi:10.1007/s00445-010-0432-1

    Article  Google Scholar 

  • Cole PD, Scarpati C (2010) The 1944 eruption of Vesuvius, Italy: combining contemporary accounts and field studies for a new volcanological reconstruction. Geol Mag 147:391–415. doi:10.1017/S0016756809990495

    Article  Google Scholar 

  • Cornell W, Carey S, Sigurdsson H (1983) Computer simulation of transport and deposition of the Campanian Y-5 ash. J Volcanol Geotherm Res 17:89–109

    Article  Google Scholar 

  • De Lorenzo G (1906) The eruption of Vesuvius in April 1906. Q J Geol Soc 62:476–483. doi:10.1144/GSL.JGS.1906.062.01-04.22

    Article  Google Scholar 

  • Fierstein J, Nathanson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54:156–167

    Article  Google Scholar 

  • Folch A, Sulpizio R (2010) Evaluating long-range volcanic ash hazard using supercomputing facilities: application to Somma-Vesuvius (Italy), and consequences for civil aviation over Central Mediterranean Area. Bull Volcanol 72:1039–1059. doi:10.1007/s00445-010-0386-3

    Article  Google Scholar 

  • Gargiulo G (1906) Il Vesuvio attraverso i secoli e l’eruzione del 7-8 aprile 1906. Tip. Editrice Pontificia M. d’Auria, Napoli

    Google Scholar 

  • Hobbs WH (1906) The grand eruption of Vesuvius in 1906. J Geol 14–7:636–655

    Article  Google Scholar 

  • Johnston-Lavis HJ (1909) The eruption of Vesuvius in April, 1906. Trans R Dublin Soc 9(2):139–200

    Google Scholar 

  • Macdonald GA (1972) Volcanoes. Prentice-Hall, Englewood Cliffs, New Jersey, 510 pp

    Google Scholar 

  • Macedonio G, Pareschi MT, Santacroce R (1988) A numerical simulation of the plinian fall phase of 79 AD eruption of Vesuvius. J Geophys Res 93(B12):14817–14827

    Article  Google Scholar 

  • Macedonio G, Pareschi MT, Santacroce R (1990) Renewal of explosive activity at Vesuvius: models for the expected tephra fallout. J Volcanol Geotherm Res 40:327–342

    Article  Google Scholar 

  • Macedonio G, Costa A, Longo A (2005) A computer model for volcanic ash fallout and assessment of subsequent hazard, Computers & Geosciences, Volume 31, Issue 7, August 2005, Pages 837–845, doi:10.1016/j.cageo.2005.01.013

  • Macedonio G, Costa A, Folch A (2008) Ash fallout scenarios at Vesuvius: numerical simulations and implications for hazards assessment. J Volcanol Geotherm Res 178:366–377. doi:10.1016/j.jvolgeores.2008.08.014

    Article  Google Scholar 

  • Mannen K (2006) Total grain-size distribution of a mafic subplinian tephra, TB-2, from the 1986 Izu-Oshima eruption, Japan: an estimation based on a theoretical model of tephra dispersal. J Volcanol Geotherm Res 155:1–17. doi:10.1016/j.jvolgeores.2006.02.004

    Article  Google Scholar 

  • Mastrolorenzo G, Munno R, Rolandi G (1993) Vesuvius 1906: a case study of a paroxysmal eruption and its relation to eruption cycles. J Volcanol Geotherm Res 58(1–4):217–237. doi:10.1016/0377-0273(93)90110-D

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res 109:B11201. doi:10.1029/2004JB003155

    Google Scholar 

  • Mercalli G (1906) La grande eruzione vesuviana cominciata il 4 aprile 1906, Mem. Pontif. Acc. Rom. Nuovi Lincei 24:1–34

    Google Scholar 

  • Nature News (1906) The eruption of Vesuvius. Nature 73:565–566. doi:10.1038/073565a0

    Article  Google Scholar 

  • Neri A, Aspinall WP, Cioni R, Bertagnini A, Baxter PJ, Zuccaro G, Andronico D, Barsotti S, Cole PD, Esposti Ongaro T, Hincks TK, Macedonio G, Papale P, Rosi M, Santacroce R, Woo G (2008) Developing an Event Tree for probabilistic hazard and risk assessment at Vesuvius. J Volcanol Geotherm Res 178:3. doi:10.1016/j.jvolgeores.2008.05.014

    Google Scholar 

  • Perret FA (1924) The Vesuvius eruption of 1906. Study of a volcanic cycle. Carnegie Institution of Washington, Publication 339, Washington

  • Pioli L, Erlund E, Johnson E, Cashman K, Wallace P, Rosi M, Delgado GH (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Parícutin Volcano 1943–1952 (Mexico). Earth Planet Sci Lett 271:359–368

    Article  Google Scholar 

  • Principe C, Tanguy JC, Arrighi S, Paiotti A, Le Goff M, Zoppi U (2004) Chronology of Vesuvius’ activity from AD79 to 1631 based on archeomagnetism of lavas and historical sources. Bull Volcanol 66:703–724. doi:10.1007/s00445-004-0348-8

    Article  Google Scholar 

  • Ricciardi GP (2009) Diario del Monte Vesuvio – Tomo III, Ed. Scientifiche e Artistiche, INGV (in Italian only)

  • Rose WI Jr, Bonis S, Stoiber RE, Keller M, Bickford T (1973) Studies of volcanic ash from two recent Central American eruptions. Bull Volcanol 37(3):338–364

    Article  Google Scholar 

  • Rose WI Jr, Anderson AT Jr, Woodruff LG, Bonis SM (1978) The October 1974 basaltic tephra from Fuego volcano: description and history of the magma body. J Volcanol Geotherm Res 4(1–2):3–53. doi:10.1016/0377-0273(78)90027-6

    Article  Google Scholar 

  • Rose WI, Durant AJ (2009) Fine ash content of explosive eruptions. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2009.01.010

    Google Scholar 

  • Sabatini V (1906) L’eruzione vesuviana dell’Aprile 1906, Boll. Del R. Comitato geologico d’Italia, fasc 3, p.169-229

  • Scandone R, Giacomelli L, Fattori Speranza F (2007) Persisteent activity and Violent Strombolian eruptions at Vesuvius between 1631 and 1944. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2007.09.014

    Google Scholar 

  • Scire JS, Insley EM, Yamartino RJ (1990) Model formulation and user’s guide for the CALMET meteorological model, report. Sigma Research Corp, Concord, MA, USA

    Google Scholar 

  • Self S, Sparks RSJ, Booth B, Walker GPL (1974) The 1973 Heimaey Strombolian Scoria deposit, Iceland. Geol Mag 111(06):539–548. doi:10.1017/S0016756800041583

    Article  Google Scholar 

  • Spinetti C, Barsotti S, Neri A, Buongiorno MF, Doumaz F, Nannipieri L (2013) Investigation of the complex dynamics and structure of the 2010 Eyjafjallajökull volcanic ash cloud using multispectral images and numerical simulations, accepted in. J Geophys Res Atmos. doi:10.1002/jgrd.50328

    Google Scholar 

  • Sulpizio R, Folch A, Costa A, Scaini C, Dellino P (2012) Hazard assessment of far-range volcanic ash dispersal from a violent Strombolian eruption at Somma-Vesuvius volcano, Naples, Italy: implications on civil aviation, Bull Volcanol 74, doi:10.1007/s00445-012-0656-3

  • Textor C, Graf HF, Herzog M, Oberhuber JM (2003) Injection of gases into the stratosphere by explosive volcanic eruptions. J Geophys Res Atmos 108:D19. doi:10.1029/2002JD002987

    Article  Google Scholar 

  • Thiselton-Dyer WT (1906) The eruption of Vesuvius. Nature 73:588. doi:10.1038/073588a0

    Article  Google Scholar 

  • Walker GPL (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rund 62:431–446

    Article  Google Scholar 

  • Woods AW (1988) The fluid dynamics and thermodynamics of eruption columns. Bull Volcanol 50:169–193

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially developed during the project “V1 - Stima della pericolosità vulcanica in termini probabilistici” funded by the Dipartimento della Protezione Civile (Italy). The manuscript does not necessarily represent DPC official opinion and policies. We thank Fabrizio Alfano for his help in analysing the sample granulometry. We are also grateful to two anonymous referees and to the associate editor C. Bonadonna, for several suggestions that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Barsotti.

Additional information

Editorial responsibility: C. Bonadonna

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 39 kb).

ESM 2

The calculated TGSDs for the two lapilli beds are compared with others calculated for other eruptions in the world: the mafic subplinian eruption of Izu-Oshima (Mannen, 2006), the 1973 Strombolian eruption of Heimay (Iceland; Self et al., 1974), the lava fountain activity at Etna during 2002-2003 and 2007 (Andronico et al., 2008 a, b), the 1968 and 1971 Cerro Negro (Rose et al., 1973) and the 1974 Fuego (Rose et al., 1978) events. (JPEG 301 kb).

High resolution image (EPS 474 kb)

ESM 3

Wind speed dependence with direction and altitude in the Vesuvian area. The data come from the Re-analysis archive from ECMWF for the period 1991–2000. (GIF 148 kb).

High resolution image (EPS 9.75 mb)

ESM 4

The modeled column height is plotted together with some height estimates deduced from chronicles and literature. In the figure the simulated mean height over the duration of each phase (black line) and the standard deviation (yellow area), which reflect column temporal variations mainly due to atmospheric corrections introduced by the CALMET processor, are shown. As a reference, we also added to the figure the observations available from the literature. (GIF 42 kb).

High resolution image (EPS 9.75 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barsotti, S., Neri, A., Bertagnini, A. et al. Dynamics and tephra dispersal of Violent Strombolian eruptions at Vesuvius: insights from field data, wind reconstruction and numerical simulation of the 1906 event. Bull Volcanol 77, 58 (2015). https://doi.org/10.1007/s00445-015-0939-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-015-0939-6

Keywords

  • Violent Strombolian eruptions
  • Mt. Vesuvius
  • 1906 eruption
  • Numerical modelling