Cristobalite in the 2011–2012 Cordón Caulle eruption (Chile)

Abstract

Cristobalite is a low-pressure high-temperature polymorph of SiO2 found in many volcanic rocks. Its volcanogenic formation has received attention because (1) pure particulate cristobalite can be toxic when inhaled, and its dispersal in volcanic ash is therefore a potential hazard; and (2) its nominal stability field is at temperatures higher than those of magmatic systems, making it an interesting example of metastable crystallization. We present analyses (by XRD, SEM, EPMA, Laser Raman, and synchrotron μ-cT) of representative rhyolitic pyroclasts and of samples from different facies of the compound lava flow from the 2011–2012 eruption of Cordón Caulle (Chile). Cristobalite was not detected in pyroclasts, negating any concern for respiratory hazards, but it makes up 0–23 wt% of lava samples, occurring as prismatic vapour-deposited crystals in vesicles and/or as a groundmass phase in microcrystalline samples. Textures of lava collected near the vent, which best represent those generated in the conduit, indicate that pore isolation promotes vapour deposition of cristobalite. Mass balance shows that the SiO2 deposited in isolated pore space can have originated from corrosion of the adjacent groundmass. Textures of lava collected down-flow were modified during transport in the insulated interior of the flow, where protracted cooling, additional vesiculation events, and shearing overprint original textures. In the most slowly cooled and intensely sheared samples from the core of the flow, nearly all original pore space is lost, and vapour-deposited cristobalite crystals are crushed and incorporated into the groundmass as the vesicles in which they formed collapse by strain and compaction of the surrounding matrix. Holocrystalline lava from the core of the flow achieves high mass concentrations of cristobalite as slow cooling allows extensive microlite crystallization and devitrification to form groundmass cristobalite. Vapour deposition and devitrification act concurrently but semi-independently. Both are promoted by slow cooling, and it is ultimately devitrification that most strongly contributes to total cristobalite content in a given flow facies. Our findings provide a new field context in which to address questions that have arisen from the study of cristobalite in dome eruptions, with insight afforded by the fundamentally different emplacement geometries of flows and domes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Adams PB (1984) Glass corrosion. J Non-Cryst Solids 67:193–205

    Article  Google Scholar 

  2. Baxter PJ, Bonadonna C, Dupree R, Hards VL, Kohn SC, Murphy MD, Nichols A, Nicholson RA, Norton GE, Searl A, Sparks RSJ, Vickers BP (1999) Cristobalite in volcanic ash of the Soufriere Hills Volcano, Montserrat, British West Indies. Science 283:1142–1145

    Article  Google Scholar 

  3. Bernard A, Le Guern F (1986) Condensation of volatile elements in high-temperature gases of Mount St. Helens. J Volcanol Geotherm Res 28:91–105

    Article  Google Scholar 

  4. Bonadonna C, Cioni R, Pistolesi M, Elissondo M, Baumann V (2015) Sedimentation of long-lasting wind-affected volcanic plumes: the example of the 2011 rhyolitic Cordón Caulle eruption, Chile. Bull Volcanol 77:13. doi:10.1007/s00445-015-0900-8

    Article  Google Scholar 

  5. Bunker BC (1994) Molecular mechanisms for corrosion of silica and silicate glasses. J Non-Cryst Solids 179:300–308

    Article  Google Scholar 

  6. Cailleteau C, Angeli F, Devreux F, Gin S, Jestin J, Jollivet P, Spalla O (2008) Insight into silicate-glass corrosion mechanisms. Nat Mater 7:978–983. doi:10.1038/nmat2301

    Article  Google Scholar 

  7. Caneiro A, Mogni L, Serquis A, Cotaro C, Wilberger D, Ayala C, Daga R, Poire D, Scerbo E (2011) Análisis de cenizas volcánicas Cordón Caulle (Complejo Volcanico Puyehue-Cordón Caulle) Erupción 4 de Junio de 2011. Informe Cenizas Volcánicas - CNEA:1-17

  8. Casey WH, Westrich HR, Holdren GR (1991) Dissolution rates of plagioclase at pH = 2 and 3. Am Mineral 76:211–217

    Google Scholar 

  9. Castro JM, Beck P, Tuffen H, Nichols ARL, Dingwell DB, Martin MC (2008) Timescales of spherulite crystallization in obsidian inferred from water concentration profiles. Am Mineral 93:1816–1822

    Article  Google Scholar 

  10. Castro JM, Schipper CI, Amigo A, Silva Parejas C, Mueller S, Jacob D, Militzer AS (2013) Storage and eruption of near-liquidus rhyolite magma at Cordón Caulle, Chile. Bull Volcanol 75:702. doi:10.1007/s00445-013-0702-9

    Article  Google Scholar 

  11. Castro JM, Bindeman IN, Tuffen H, Schipper CI (2014) Explosive origin of silicic lava: Textural and δD-H2O evidence for pyroclastic degassing during rhyolite effusion. Earth Planet Sci Lett 405:52–61. doi:10.1016/j.epsl.2014.08.012

    Article  Google Scholar 

  12. Clark DE, Yen-Bower EL (1980) Corrosion of glass surfaces. Surf Sci 100:53–70

    Article  Google Scholar 

  13. Cressey G, Schofield PF (1996) Rapid whole-pattern profile-stripping method for the quantification of multiphase samples. Powder Diffract 11:35–39

    Article  Google Scholar 

  14. Damby DE (2012) From dome to disease: The respiratory toxicity of volcanic cristobalite. PhD thesis. Durham University, Durham, p 359. http://etheses.dur.ac.uk/7328/

  15. Damby DE, Horwell CJ, Llewellin EW, Nattrass C (2013) Cristobalite in volcanic domes: crystallization of a meta-stable mineral. In: IAVCEI 2013 Scientific Assembly. Kagoshima, Japan

  16. Damby DE, Llewellin EW, Horwell CJ, Williamson BJ, Najorka J, Cressey G, Carpenter M (2014) The α-β phase transition in volcanic cristobalite. J Appl Cristallogr 47:1205–1215. doi:10.1107/S160057671401070X

    Article  Google Scholar 

  17. de Hoog JCM, van Bergen MJ, Jacobs MHG (2005) Vapour-phase crystallisation of silica from SiF4-bearing volcanic gases. Ann Geophys 48:775–785

    Google Scholar 

  18. de Lima EF, Sommer CA, Cordeiro Silva IM, Netta AP, Lindenberg M, Marques Alves RC (2012) Morfologia e química de cenizas do vulcão Puyehue depositadas na região metropolitana de Porto Alegre em junho de 2011. Revista Brasiliera de Geociencias 42:265–280. doi:10.5327/Z0375-75362012000200004

    Article  Google Scholar 

  19. Declercq J, Diedrich T, Perrot M, Gislason SR, Oelkers EH (2013) Experimental determination of rhyolitic glass dissolution rates at 40–200 °C and 2 < pH < 10.1. Geochim Cosmochim Acta 100:251–263. doi:10.1016/j.gca.2012.10.006

    Article  Google Scholar 

  20. Deer WA, Howie RA, Zussman J (1992) An Introduction to the Rock-Forming MInerals 2nd Edition. John Wiley and Sons, New York

    Google Scholar 

  21. Delmelle P, Lambert M, Dufrêne Y, Gerin P, Óskarsson (2007) Gas/aerosol-ash interaction in volcanic plumes: New insights from surface analyses of fine ash particles. Earth Planet Sci Lett 259:159–170. doi:10.1016/j.epsl.2007.04.052

    Article  Google Scholar 

  22. Dyson DJ, Butler MA, Hughes RJ, Fisher R, Hicks GW (1997) The de-vitrification of alumino-silicate ceramic fibre materials - The kinetics of the formation of different crystalline phases. Ann Occup Hyg 41:561–590

    Article  Google Scholar 

  23. Ewart A (1971) Chemical changes accompanying spherulitic crystallization in rhyolitic lavas, Central Volcanic Region, New Zealand. Mineral Mag 38:424–434

    Article  Google Scholar 

  24. Fink JH, Anderson SW (2000) Lava Domes and Coulees. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of Volcanoes. Academic Press, New York, pp 307–319

    Google Scholar 

  25. Foustoukos DI, Seyfried WE Jr (2007) Quartz solubility in the two-phase and critical region of the NaCl-KCl-H2O system: Implications for submarine hydrothermal vent systems at 9o50' N East Pacific Rise. Geochim Cosmochim Acta 71:186–201. doi:10.1016/j.gca.2006.08.038

    Article  Google Scholar 

  26. Freeman JJ, Wang A, Kuebler KE, Jolliff BL, Haskin LA (2008) Characterization of natural feldspars by raman spectroscopy for future planetary exploration. Can Mineral 46:1477–1500. doi:10.3749/canmin.46.6.1477

    Article  Google Scholar 

  27. Gerlach DC, Frey FA, Moreno-Roa H, Lopez-Escobar L (1988) Recent volcanism in the Puyehue-Cordón Caulle region, southern Andes, Chile (40.5o S): Petrogenesis of evolved lavas. J Petrol 29:333–382

    Article  Google Scholar 

  28. Gillet P, Le Cléac'h A (1990) High-temperature raman spectroscopy of SiO2 and GeO2 polymorphs: Anharmonicity and thermodynamic properties at high-temperatures. J Geophys Res 95(B13):21635–21655. doi:10.1029/JB095iB13p21635

    Article  Google Scholar 

  29. Hamilton JP, Pantano CG (1997) Effects of glass structure on the corrosion behavior of sodium-aluminosilicate glasses. J Non-Cryst Solids 222:167–174

    Article  Google Scholar 

  30. Heaney PJ (1994) Structure and chemistry of the low-pressure silica polymorphs. Rev Mineral 29:1–40

    Google Scholar 

  31. Hench LL, Clark DE, Yen-Bower EL (1980) Corrosion of glasses and glass-ceramics. Nucl Chem Waste Manag 1:59–75

    Article  Google Scholar 

  32. Higgins MD (1994) Numerical modeling of crystal shapes in thin sections: Estimation of crystal habit and true size. Am Mineral 79:113–119

    Google Scholar 

  33. Hillman SE, Horwell CJ, Densmore AL, Damby DE, Fubini B, Ishimine Y, Tomatis M (2012) Sakurajima volcano: a physico-chemical study of the health consequences of long-term exposure to volcanic ash. Bull Volcanol 74:913–930. doi:10.1007/s00445-012-0575-3

    Article  Google Scholar 

  34. Horwell CJ, Baxter PJ (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69:1–24. doi:10.1007/s00445-006-0052-y

    Article  Google Scholar 

  35. Horwell CJ, Sparks RSJ, Brewer TS, Llewellin EW, Williamson BJ (2003) Characterization of respirable volcanic ash from the Soufrière Hills volcano, Montserrat, with implications for human health hazards. Bull Volcanol 65:346–362. doi:10.1007/s00445-002-0266-6

    Article  Google Scholar 

  36. Horwell CJ, Le Blond JS, Michnowicz SAK, Cressey G (2010) Cristobalite in a rhyolitic lava dome: evolution of ash hazard. Bull Volcanol 72:249–253. doi:10.1007/s00445-009-0327-1

    Article  Google Scholar 

  37. Horwell CJ, Williamson BJ, Donaldson K, Le Blond JS, Damby DE, Bowen L (2012) The structure of volcanic cristobalite in relation to its toxicity; relevance for the variable crystalline silica hazard. Particle Fibre Tech 9:44

    Article  Google Scholar 

  38. Horwell CJ, Williamson BJ, Llewellin EW, Damby DE, Le Blond JS (2013) The nature and formation of cristobalite at the Soufrière Hills volcano, Montserrat: implications for the petrology and stability of silicic lava domes. Bull Volcanol 75:696. doi:10.1007/s00445-013-0696-3

    Article  Google Scholar 

  39. Horwell CJ, Hillman SE, Cole PD, Loughlin SC, Llewellin EW, Damby DE, Christopher TE (2014) Controls on variations in cristobalite abundance in ash generated by the Soufrière Hills Volcano, Montserrat in the period 1997-2010. Geol Soc Lond Mem 39:399–406. doi:10.1144/M39.21

    Article  Google Scholar 

  40. Icenhower JP, Samson S, Lüttge A, McGrail BP (2004) Towards a consistent rate law: glass corrosion kinetics near saturation. Geol Soc London Spec Pub 236:579–594. doi:10.1144/GSL.SP.2004.236.01.32

    Article  Google Scholar 

  41. Jay J, Costa F, Pritchard M, Lara LE, Singer BS, Herrin J (2014) Locating magma reservoirs using InSAR and petrology before and during the 2011-2012 Cordón Caulle silicic eruption. Earth Planet Sci Lett 395:254–266. doi:10.1016/j.epsl.2014.03.046

    Article  Google Scholar 

  42. Jones MT, Gislason SR (2008) Rapid release of metal salts and nutrients following the deposition of volcanic ash into aqueous environments. Geochim Cosmochim Acta 72:3661–3680. doi:10.1016/j.gca.2008.05.030

    Article  Google Scholar 

  43. Jones JB, Segnit ER (1972) Genesis of cristobalite and tridymite at low temperatures. J Geol Soc Aust 18:419–422. doi:10.1080/00167617208728780

    Article  Google Scholar 

  44. Kendrick JE, Lavallée Y, Hess K-U, De Angelis S, Ferk A, Gaunt HE, Meredith PG, Dingwell DB, Leonhardt R (2014) Seismogenic frictional melting in the magmatic column. Solid Earth 5:199–208. doi:10.5194/se-5-199-2014

    Article  Google Scholar 

  45. Kingma KJ, Hemley RJ (1994) Raman spectroscopic study of microcrystalline silica. Am Mineral 79:269–273

    Google Scholar 

  46. Lange RA, Carmichael ISE (1990) Thermodynamic properties of silicate liquids with an emphasis on density, thermal expansion and compressibility. Rev Mineral 24:25–64

    Google Scholar 

  47. Lara LE, Naranjo JA, Moreno H (2004) Rhyodacitic fissure eruption in Southern Andes (Cordón Caulle; 40.5°S) after the 1960 (Mw: 9.5) Chilean earthquake: A structural interpretation. J Volcanol Geotherm Res 138:127–138

    Article  Google Scholar 

  48. Lara LE, Moreno H, Naranjo JA, Matthews S, Pérez de Arce C (2006) Magmatic evolution of the Puyehue-Cordón Caulle Volcanic Complex (40° S), Southern Andean Volcanic Zone: From shield to unusual rhyolite fissure volcanism. J Volcanol Geotherm Res 157:343–366

    Article  Google Scholar 

  49. Le Blond JS, Cressey G, Horwell CJ, Williamson BJ (2009) A rapid method for quantifying single mineral phases in heterogeneous natural dusts using X-ray diffraction. Powder Diffract 24:17–23

    Article  Google Scholar 

  50. Le Guern F, Bernard A (1982) A new method for sampling and analyzing volcanic sublimates - Application to Merapi Volcano, Java. J Volcanol Geotherm Res 12:133–146

    Article  Google Scholar 

  51. Limaye A (2012) Drishti: a volume exploration and presentation tool. Depvelopments in X-Ray Tomography 85060X. doi:10.1117/12.935640

  52. Lofgren G (1970) Experimental devitrification rate of rhyolite glass. Geol Soc Am Bull 81:553–560

    Article  Google Scholar 

  53. Lofgren G (1971a) Experimentally produced devitrification textures in natural rhyolitic glass. Geol Soc Am Bull 82:111–124

    Article  Google Scholar 

  54. Lofgren GE (1971b) Experimentally produced devitrification textures in natural rhyloitic glass. Geol Soc Am Bull 82:111–124

    Article  Google Scholar 

  55. Martel C, Bourdier J-L, Pichavant M, Traineau H (2000) Textures, water content and degassing of silicic andesites from recent plinian and dome-forming eruptions at Mount Pelée volcano (Martinique, Lesser Antilles arc). J Volcanol Geotherm Res 96:191–206

    Article  Google Scholar 

  56. Militzer AS (2013) The P-T-x evolution of the 2011-12 explosively and effusively erupted rhyolites at Puyehue-Cordón Caulle, Chile. Diplomarbeit zum Thema thesis. Unviersity of Mainz, Mainz, p 100

  57. Mosesman MA, Pitzer KS (1941) Thermodynamic properties of the crystalline forms of silica. J Am Chem Soc 63:2348–2356. doi:10.1021/ja01854a013

    Article  Google Scholar 

  58. Mossman BT, Glenn RE (2013) Bioreactivity of the crystalline silica polymorphs, quartz and cristobalite, and implications for occupational exposure limits (OELs). Crit Rev Toxicol 43:1–29. doi:10.3109/10408444.2013.818617

    Article  Google Scholar 

  59. Mueller S, Melnik O, Spieler O, Scheu B, Dingwell DB (2005) Permeability and degassing of dome lavas undergoing rapid decompression: An experimental determination. Bull Volcanol 67:526–538. doi:10.1007/s00445-004-0392-4

    Article  Google Scholar 

  60. Murphy MD, Sparks RSJ, Barclay J, Carroll MR, Brewer TS (2000) Remobilization of andesite magma by intrusion of mafic magma at the Soufriere Hills Volcano, Montserrat, West Indies. J Petrol 41:21–42

    Article  Google Scholar 

  61. Mysen B, Richet P (2005) Silicate Glasses and Melts: Properties and Structure. Elsevier, Amsterdam, p 560

    Google Scholar 

  62. Nakada S, Motomura Y (1999) Petrology of the 1991-1995 eruption at Unzen: effusion pulsation and groundmass crystallization. J Volcanol Geotherm Res 89:173–196

    Article  Google Scholar 

  63. Oelkers EH (2001) General kinetic description of multioxide silicate mineral and glass dissolution. Geochim Cosmochim Acta 65:3703–3719

    Article  Google Scholar 

  64. Okumura S, Nakamura M, Tsuchiyama A, Nakano T, Uesugi K (2008) Evolution of bubble microstructure in sheared rhyolite: Formation of a channel-like bubble network. J Geophys Res 113(B07208). doi:10.1029/2007JB005362

  65. Okumura S, Nakamura M, Takeuchi S, Tsuchiyama A, Nakano T, Uesugi K (2009) Magma deformation may induce non-explosive volcanism via degassing through bubble networks. Earth Planet Sci Lett 281:267–274. doi:10.1016/j.epsl.2009.02.036

    Article  Google Scholar 

  66. Oxburgh R, Drever JI, Sun Y-T (1994) Mechanism of plagioclase dissolution in acid solution at 25 oC. Geochim Cosmochim Acta 58:661–669

    Article  Google Scholar 

  67. Pallister JS, Thornber CR, Cashman KV, Clynne MA, Lowers HA, Mandeville CW, Brownfield IK, Meeker GP (2008) Petrology of the 2004-2006 Mount St. Helens lava dome - Implications for magmatic plumbing and eruption triggering. In: Sherrod DR, Scott WE, Stauffer PH (eds) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006. US Geological Survey Professional Paper. pp 647-702

  68. Patrick MR, Dehn J, Dean K (2004) Numerical modeling of lava flow cooling applied to the 1997 Okmok eruption: Approach and analysis. J Geophys Res 109:B03202. doi:10.1029/2003JB002537

    Google Scholar 

  69. Pistolesi M, Cioni R, Bonadonna C, Elissondo M, Baumann V, Bertagnini A, Chiari L, Gonzales R, Rosi M, RFrancalanci L (2015) Complex dynamics of small-moderate volcanic events: the example of the 2011-12 rhyolitic Cordón Caulle eruption, Chile. Bull Volcanol 77:3. doi:10.1007/s00445-014-0898-3

    Article  Google Scholar 

  70. Raga GB, Baumgardner D, Ulke AG, Torres Brizuela M, Kucienska B (2013) The environmental impact of the Puyehue–Cordon Caulle 2011 volcanic eruption on Buenos Aires. Nat Hazards Earth Syst Sci 13:2319–2330. doi:10.5194/nhess-13-2319-2013

    Article  Google Scholar 

  71. Reich M, Zúñiga A, Amigo Á, Vargas G, Morata D, Palacios C, Parada MÁ, Garreaud RD (2009) Formation of cristobalite nanofibers during explosive volcanic eruptions. Geology 37:435–438. doi:10.1130/G25457A.1

    Article  Google Scholar 

  72. Renders PJN, Gammons CH, Barnes HL (1995) Precipitation and dissolution rate constants for cristobalite from 150 to 300 oC. Geochim Cosmochim Acta 59:77–85. doi:10.1016/0016-7037(94)00232-B

    Article  Google Scholar 

  73. Rosenberg PE (1988) Aluminum fluoride hydrates, volcanogenic salts from Mount Erebus, Antarctica. Am Mineral 73:855–860

    Google Scholar 

  74. Schipper CI, Castro JM, Tuffen H, James MR, How P (2013) Shallow vent architecture during hybrid explosive-effusive activity at Cordón Caulle (Chile, 2011-12): Evidence from direct observations and pyroclast textures. J Volcanol Geotherm Res 262:25–37. doi:10.1016/j.jvolgeores.2013.06.005

    Article  Google Scholar 

  75. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  Google Scholar 

  76. Shmulovich KI, Yardley BWD, Graham CM (2006) Solubility of quartz in crustal fluids: experiments and general equations for salt solutions and H2O-CO2 mixtures at 400-800 oC and 0.1-0.9 GPa. Geofluids 6:154–167. doi:10.1111/j.1468-8123.2006.00140.x

    Article  Google Scholar 

  77. Silva Parejas C, Lara LE, Bertin D, Amigo A, Orozco G (2012) The 2011-2012 eruption of Cordón Caulle volcano (Southern Andes): Evolution, crisis management and current hazards. EGU General Assembly Abstracts 14(EGU2012-9382-2)

  78. Singer BS, Jicha BR, Harper MA, Naranjo JA, Lara LE, Moreno-Roa H (2008) Eruptive history, geochronology, and magmatic evolution of the Puyehue-Cordón Caulle volcanic complex, Chile. Geol Soc Am Bull 120:599–618. doi:10.1130/B26276.1

    Article  Google Scholar 

  79. Swanson SE, Naney MT, Westrich HR, Eichelberger JC (1989) Crystallization history of Obsidian Dome, Inyo Domes, California. Bull Volcanol 51:161–176

    Article  Google Scholar 

  80. Talvitie NH (1964) Determination of free silica: Gravimetric and spectrophotometric procedures applicable to airborne settled dust. Am Ind Hyg Assoc J 25:169–178

    Article  Google Scholar 

  81. Tuffen H, James MR, Castro JM, Schipper CI (2013) Exceptional mobility of an advancing rhyolitic obsidian flow at Cordón Caulle volcano in Chile. Nat Commun 4:2709. doi:10.1038/ncomms3709

    Article  Google Scholar 

  82. Verma DK, Johnson DM, Des Tombe K (2002) A method for determining crystalline silica in bulk samples by Fourier transform infrared spectrophotometry. Ann Occup Hyg 46:609–615. doi:10.1093/annhyg/mef077

    Article  Google Scholar 

  83. Vernier J-P, Fairlie TD, Murray JJ, Tupper A, Trepte C, Winker D, Pelon J, Garnier A, Jumelet J, Pavolonis M, Momar AH, Powell KA (2013) An Advanced System to Monitor the 3D Structure of Diffuse Volcanic Ash Clouds. J Appl Meteorol Climatol 52:2125–2138. doi:10.1175/JAMC-D-12-0279.1

    Article  Google Scholar 

  84. Watkins J, Manga M, Huber C, Martin MC (2009) Diffusion-controlled spherulite growth in obsidian inferred from H2O concentration profiles. Contrib Mineral Petrol 157:163–172

    Article  Google Scholar 

  85. Wilson T, Stewart C, Bickerton H, Baxter PJ, Outes V, Villarosa G, Rovere E (2013) Impacts of the June 2011 Puyehue-Cordón Caulle volcanic complex eruption on urban infrastructure, agriculture and public health. p 98

  86. Wolff-Boenisch D, Gislarson SR, Oelkers EH (2004a) The effect of fluoride on the dissolution rates of natural glasses at pH 4 and 25 °C. Geochim Cosmochim Acta 68:4571–4582. doi:10.1016/j.gca.2004.05.026

    Article  Google Scholar 

  87. Wolff-Boenisch D, Gislason SR, Oelkers EH, Putnis CV (2004b) The dissolution rates of natural glasses as a function of their composition at pH 4 and 10.6, and temperatures from 25 to 74 °C. Geochim Cosmochim Acta 68:4843–4858. doi:10.1016/j.gca.2004.05.027

    Article  Google Scholar 

  88. Wright HMN, Weinberg RF (2009) Strain localization in vesicular magma: Implications for rheology and fragmentation. Geology 37:1023–1026. doi:10.1130/G30199A.1

    Article  Google Scholar 

  89. Zhang Y (2008) Geochemical Kinetics. Princeton University Press, p 631

Download references

Acknowledgments

CIS acknowledges support from the ERC grant 202844 awarded to A. Burgisser under the EU FP7, from Victoria University FSRG grant number 205424, and from the Royal Society of New Zealand Cook Fellowship awarded to C.J.N. Wilson. JMC was supported by the VAMOS research center at the University of Mainz. HT acknowledges support from a Royal Society University Research Fellowship. FBW acknowledges support from the EU FP7 grant 282759 (VUELCO). Access to the Australian Synchrotron’s IMBL was granted under proposals 2013/2-M7045 and 2014/1-M7574, with travel support from the New Zealand Synchrotron Group Ltd., and assistance from M. Edwards, J. Cowlyn, and B.M. Kennedy of the University of Canterbury.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Ian Schipper.

Additional information

Editorial responsibility: J.E. Gardner

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schipper, C.I., Castro, J.M., Tuffen, H. et al. Cristobalite in the 2011–2012 Cordón Caulle eruption (Chile). Bull Volcanol 77, 34 (2015). https://doi.org/10.1007/s00445-015-0925-z

Download citation

Keywords

  • Cristobalite
  • Puyehue-Cordón Caulle
  • Vapour phase crystallization
  • Rhyolite
  • Glass corrosion
  • Devitrification