Late Pleistocene-Holocene volcanic activity in northern Victoria Land recorded in Ross Sea (Antarctica) marine sediments

  • P. Del CarloEmail author
  • A. Di Roberto
  • G. Di Vincenzo
  • A. Bertagnini
  • P. Landi
  • M. Pompilio
  • E. Colizza
  • G. Giordano
Research Article


Eight pyroclastic fall deposits have been identified in cores of Late Pleistocene-Holocene marine sediments from the Ross Sea (Antarctica), and their components, granulometry and clast morphologies were analysed. Sedimentological, petrographic and geochemical analysis of clasts, with 40Ar-39Ar dating of alkali feldspar grains, indicate that during this period at least five explosive eruptions of mid to high intensity (plinian to subplinian) occurred, and that three of these eruptions took place from Mount Melbourne volcanic complex, between 137.1 ± 3.4 and 12 ka. Geochemical comparison of the studied tephra with micro- and crypto-tephra recovered from deep Antarctic ice cores and from nearby englacial tephra at Frontier Mountain indicates that eruptive activity in the Melbourne Volcanic Province of northern Victoria Land was intense during the Late Pleistocene-Holocene, but only a general area of provenance for the majority of the identified tephra can be identified.


Antarctica Melbourne volcanic province Gravity cores Marine tephra 40Ar-39Ar dating 



A. Cavallo of INGV Sezione di Roma is acknowledged for assistance in microprobe analyses. This work was funded by the Italian Programma Nazionale di Ricerche in Antartide (PNRA), PdR2010/A2.12: Glacial and interglacial transitions deduced by the multidisciplinary study of marine sediments in the Ross Sea (Antarctica). A. Di Roberto benefited from a postdoctoral grant from the above-mentioned PNRA project. J.D.L. White, S. Rocchi and two anonymous reviewers are kindly acknowledged for their constructive revision of the manuscript.

Supplementary material

445_2015_924_MOESM1_ESM.xlsx (11 kb)
Online resource 1 Core locations, recovery parameters and water depth of sampling. (XLSX 10 kb)
445_2015_924_MOESM2_ESM.xlsx (96 kb)
Online resource 2 Total fusion 40Ar-39Ar data. Argon isotope concentrations are in V. (XLSX 96 kb)


  1. Armienti P, Tripodo A (1991) Petrography and chemistry of lavas and comagmatic xenoliths of Mt. Rittmann, a volcano discovered during the IV Italian expedition in Northern Victoria Land (Antarctica). Mem Soc Geol Ital 46:427–451Google Scholar
  2. Armstrong RL (1978) K-Ar dating: late Cenozoic McMurdo volcanic group and Dry Valley glacial history, Victoria Land, Antarctica. N Z J Geol Geophys 21:685–698. doi: 10.1080/00288306.1978.10425199 CrossRefGoogle Scholar
  3. Basile I, Petit JR, Touron S, Grousset FE, Barkov N (2001) Volcanic layers in Antarctic (Vostok) ice cores: source identification and atmospheric implications. J Geophys Res Atmos 106(D23):31915–31931. doi: 10.1029/2000JD000102 CrossRefGoogle Scholar
  4. Behrendt JC (2012) The aeromagnetic method as a tool to identify Cenozoic magmatism in the West Antarctic Rift System beneath the West Antarctic Ice Sheet—a review; Thiel subglacial volcano as possible source of the ash layer in the WAISCORE. Tectonophysics 585:124–136. doi: 10.1016/j.tecto.2012.06.035 CrossRefGoogle Scholar
  5. Bonaccorso A, Mione M, Pertusati PC, Privitera E, Ricci CA (1991) Fumarolic activity at Mt. Rittmann volcano (Northern Victoria Land, Antarctica). Mem Soc Geol Ital 46:453–456Google Scholar
  6. Buettner R, Dellino P, Zimanowski B (1999) Identifying modes of magma fragmentation from the surface features of ash particles. Nature 401:688–690. doi: 10.1038/44364 CrossRefGoogle Scholar
  7. Carey S, Bursik M (2000) Volcanic plumes. In: Sigurdsson H, Houghton BF, McNutt S, Rhymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 527–554Google Scholar
  8. Carey S, Sigurdsson H (1978) Deep-sea evidence for distribution of tephra from the mixed magma eruption of the Soufrière on St. Vincent, 1902: ash turbidites and air fall. Geology 6:271. doi: 10.1130/0091-7613(1978)6<271:DEFDOT>2.0.CO;2 CrossRefGoogle Scholar
  9. Cashman KV, Sturtevant B, Papale P, Navon O (2000) Magmatic fragmentation. In: Sigurdsson H, Houghton BF, McNutt S, Rhymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 419–430Google Scholar
  10. Colizza E, Finocchiaro F, Marinoni L, Menegazzo Vitturi L, Brambati A (2003) Tephra evidence in Marine Sediments from the shelf of the Western Ross Sea. Terra Antart Rep 8:121–126Google Scholar
  11. Connolley WM, King JC (1993) Atmospheric water-vapour transport to Antarctica inferred from radiosonde data. Q J R Meteorol Soc 119:325–342CrossRefGoogle Scholar
  12. Curzio P, Folco L, Laurenzi MA, Mellini M, Zeoli A (2008) A tephra chronostratigraphic framework for the Frontier Mountain blue-ice field (northern Victoria Land, Antarctica). Quat Sci Rev 27:602–620. doi: 10.1016/j.quascirev.2007.11.017 CrossRefGoogle Scholar
  13. Davies SM, Wastegård S, Abbott PM, Barbante C, Bigler M, Johnsen SJ, Rasmussen TL, Steffensen JP, Svensson A (2010) Tracing volcanic events in the NGRIP ice-core and synchronising North Atlantic marine records during the last glacial period. Earth Planet Sci Lett 294:69–79. doi: 10.1016/j.epsl.2010.03.004 CrossRefGoogle Scholar
  14. Delmonte B, Basile-Doelsch I, Petit JR, Maggi V, Revel-Rolland M, Michand A, Jagoutz E, Grousset F (2004) Comparing the Epica and Vostok dust records during the last 220,000 years: stratigraphical correlation and provenance in glacial periods. Earth Sci Rev 66:63–87. doi: 10.1016/j.earscirev.2003.10.004 CrossRefGoogle Scholar
  15. Delmonte B, Andersson PS, Hansson M, Schöberg H, Petit JR, Basile-Doelsch I, Maggi V (2008) Aeolian dust in East Antarctica (EPICA-Dome C and Vostok): Provenance during glacial ages over the last 800 kyr.Geophys Res Lett 35. doi: 10.1029/2008GL033382
  16. Di Roberto A, Del Carlo P, Rocchi S, Panter KS (2012) Early Miocene volcanic activity and paleoenvironmental conditions recorded in tephra layers of the AND-2A core (southern MCMurdo Sound, Antarctica). Geosphere 8:1342–1355. doi: 10.1130/GES00754.1 CrossRefGoogle Scholar
  17. Di Vincenzo G, Skála R (2009) 40Ar–39Ar laser dating of tektites from the Cheb Basin (Czech republic): evidence for coevality with moldavites and influence of the dating standard on the age of the Ries impact. Geochim Cosmochim Acta 73:493–513. doi: 10.1016/j.gca.2008.10.002 CrossRefGoogle Scholar
  18. Di Vincenzo G, Bracciali L, Del Carlo P, Panter K, Rocchi S (2010) 40Ar–39Ar dating of volcanogenic products from the AND-2A core (ANDRILL Southern McMurdo Sound Project, Antarctica): correlations with the Erebus Volcanic Province and implications for the age model of the core. Bull Volcanol 72:487–505. doi: 10.1007/s00445-009-0337-z CrossRefGoogle Scholar
  19. Dunbar NW (2002) Tephra in Siple and Taylor Dome Ice Cores. Boulder Colo USA Natl Snow Ice Data Cent. doi: 10.7265/N50P0WXF Google Scholar
  20. Dunbar NW (2003) Blue Ice Tephra II—Brimstone Peak. Boulder Colo USA Natl Snow Ice Data Cent. doi: 10.7265/N5MG7MDK Google Scholar
  21. Dunbar NW, Kurbatov AV (2011) Tephrochronology of the Siple Dome ice core, West Antarctica: correlations and sources. Quat Sci Rev 30(13–14):1602–1614. doi: 10.1016/j.quascirev.2011.03.015.
  22. Dunbar NW, Zielinski GA, Voisins DT (2003) Tephra layers in the Siple Dome and Taylor Dome ice cores, Antarctica: sources and correlations. J Geophys Res 108:2374. doi: 10.1029/2002JB002056 CrossRefGoogle Scholar
  23. Engwell SL, Sparks RSJ, Carey S (2014) Physical characteristics of tephra layers in the deep realm: the Campanian Ignimbrite eruption. In: Austin WEN, Abbott PM, Davies SM, Pearce NJG, Wastegård S (eds) Marine Tephrochronology, Geological Society. Special Publications, London. doi: 10.1144/SP398.7, 398Google Scholar
  24. Esser R, Kyle PR (2002) 40Ar/39Ar chronology the McMurdo Volcanic Group at the Pleiades, northern Victoria Land, Antarctica. Proc R Soc N Z Bull 35:415–418Google Scholar
  25. Esser RP, Kyle PR, McIntosh WC (2004) 40Ar/39Ar dating of the eruptive history of Mount Erebus, Antarctica: volcano evolution. Bull Volcanol 66:671–686. doi: 10.1007/s00445-004-0354-x CrossRefGoogle Scholar
  26. Fisher RV, Schmincke HU (1984) Pyroclastic rocks. Springer, BerlinCrossRefGoogle Scholar
  27. Fraser CI, Terauds A, Smellie J, Convey P, Chown SL (2014) Geothermal activity helps life survive glacial cycles. PNAS 111:5634–5639. doi: 10.1073/pnas.1321437111 CrossRefGoogle Scholar
  28. Froggatt PC (1992) Standardization of the chemical analysis of tephra deposits, report of the ICCT working group. Quat Int 13(14):93–96. doi: 10.1016/1040-6182(92)90014-S CrossRefGoogle Scholar
  29. Fujii Y, Kohno M, Motoyama H, Matoba S, Watanabe O, Fujita S, Azuma N, Kikuchi T, Fukuoka T (1999) Ann Glaciol 29:126–130. doi: 10.3189/172756499781821003 CrossRefGoogle Scholar
  30. Giordano G, Lucci F, Phillips D, Cozzupoli D, Runci V (2012) Stratigraphy, geochronology and evolution of the Mt. Melbourne volcanic field (North Victoria Land, Antarctica). Bull Volcanol 74:1985–2005. doi: 10.1007/s00445-012-0643-8 CrossRefGoogle Scholar
  31. Harpel CJ, Kyle PR, Esser RP, McIntosh WC, Caldwell DA (2004) 40Ar/39Ar dating of the eruptive history of Mt. Erebus, Antarctica: summit flows, tephra, and caldera collapse. Bull Volcanol 66:687–702. doi: 10.1007/s00445-004-0349-7 CrossRefGoogle Scholar
  32. Harpel CJ, Kyle PR, Dunbar NW (2008) Englacial tephrostratigraphy of Erebus volcano, Antarctica. J Volcanol Geotherm Res 177:549–568. doi: 10.1016/j.jvolgeores.2008.06.001 CrossRefGoogle Scholar
  33. Heiken GH, Wholetz KH (1985) Volcanic ash. University of California Press, Berkeley, pp 1–245Google Scholar
  34. Inman DL (1952) Measures for describing the size distribution of sediments. J Sediment Petrol 22(3):125–145. doi: 10.1306/D42694DB-2B26-11D7-8648000102C1865D Google Scholar
  35. Keys JR, Anderton PW, Kyle PR (1977) Tephra and debris layers in the Skelton Neve and Kempe Glacier, South Victoria Land, Antarctica. N Z J Geol Geophys 20(5):971–1002. doi: 10.1080/00288306.1977.10420692 CrossRefGoogle Scholar
  36. Kohno M, Fujii Y, Hirata T (2004) Chemical composition of volcanic glasses in visible tephra layers found in a 2503 m deep ice core from Dome Fuji, Antarctica. Ann Glaciol 39:576–584. doi: 10.3189/172756404781813934 CrossRefGoogle Scholar
  37. Kraus S, Kurbatov A, Yates M (2013) Geochemical signatures of tephras from Quaternary Antarctic Peninsula volcanoes. Andean Geol 40:1–40. doi: 10.5027/andgeoV40n1-a01 Google Scholar
  38. Kyle PR (1982) Volcanic geology of the Pleiades, Northern Victoria Land, Antarctica. In: Craddock C (ed) Antarctic Geoscience. The University of Wisconsin Press, Madison, pp 747–754Google Scholar
  39. Kyle PR (1990) McMurdo Volcanic Group, Western Ross Embayment. In: LeMasurier WE, Thmson JW (eds) Volcanoes of the Antarctic Plate and Southern Oceans. Am Geophys Union, Antarct Res Series 48:19–145Google Scholar
  40. Kyle PR, Moore JA, Thirwall MF (1992) Petrologic evolution of anorthoclase phonolite lavas at Mt. Erebus, Ross Island, Antarctica. J Petrol 33:849–875. doi: 10.1093/petrology/33.4.849 CrossRefGoogle Scholar
  41. Laurenzi MA, Mellini M, Perchiazzi N (2003) 40Ar/39Ar dating of Tephra in blue ice (Northern Victoria Land, Antarctica): prospects and limitations. Terra Antart Rep 8:193–196Google Scholar
  42. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin BA (1986) Chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750. doi: 10.1093/petrology/27.3.745 CrossRefGoogle Scholar
  43. LeMasurier WE, Thomson JW (1990) Volcanoes of the Antarctic Plate and Southern Oceans. Antarctic Research Series 48, American Geophysical Union, Washington, DC 487Google Scholar
  44. Licht KJ, Dunbar NW, Andrews JT, Jennings AE (1999) Distinguishing subglacial till and glacial marine diamictons in the western Ross Sea, Antarctica: implications for a last glacial maximum grounding line. Geol Soc Am Bull 111(1):91–103. doi: 10.1130/0016-7606 CrossRefGoogle Scholar
  45. Lough AC, Wiens D, Barscheck CG, Anandakrishnan S, Aster RC, Blankenship DD, Huerta AD, Nyblade A, Young DA, Wilson T (2013) Seismic detection of an active subglacial magmatic complex in Marie Byrd Land, Antarctica. Nat Geosci 6:1031–1035. doi: 10.1038/ngeo1992 CrossRefGoogle Scholar
  46. Lowe DJ (2011) Tephrochronology and its application: a review. Quat Geochronol 6:107–153. doi: 10.1016/j.quageo.2010.08.003 CrossRefGoogle Scholar
  47. McPhie J, Doyle M, Allen RL (1993) Volcanic textures: A guide to the interpretation of textures in volcanic rocks: University of Tasmania, Centre for Ore Deposit and Exploration StudiesGoogle Scholar
  48. Narcisi B, Petit JR, Delmonte B, Basile-Doelsch I, Maggi V (2005) Characteristics and sources of tephra layers in the EPICA-Dome C ice record (East Antarctica): implications for past atmospheric circulation and ice core stratigraphic correlations. Earth Planet Sci Lett 239(3–4):253–265. doi: 10.1016/j.epsl.2005.09.005 CrossRefGoogle Scholar
  49. Narcisi B, Proposito M, Frezzotti M (2001) Ice record of a 13th century explosive volcanic eruption in northern Victoria Land, East Antarctica. Ant Sci 13(2): 174-181. doi: 10.1017/S0954102001000268
  50. Narcisi B, Petit JR, Tiepolo M (2006) A volcanic marker (92 ka) for dating deep east Antarctic ice cores. Quat Sci Rev 25(21–22):2682–2687. doi: 10.1016/j.quascirev.2006.07.009 CrossRefGoogle Scholar
  51. Narcisi B, Petit JR, Delmonte B (2010a) Extended East Antarctic ice-core tephrostratigraphy. Quat Sci Rev 29(1–2):21–27. doi: 10.1016/j.quascirev.2009.07.009 CrossRefGoogle Scholar
  52. Narcisi B, Petit JR, Chappellaz J (2010b) A 70 ka record of explosive eruptions from the TALDICE ice core (Talos Dome, East Antarctic plateau). J Quat Sci 25:844–849. doi: 10.1002/jqs.1427 CrossRefGoogle Scholar
  53. Narcisi B, Petit JR, Delmonte B, Scarchilli C, Stenni B (2012) A 16,000-yr tephra framework for the Antarctic ice sheet: a contribution from the new Talos Dome core. Quat Sci Rev 49:52–63. doi: 10.1016/j.quascirev.2012.06.011 CrossRefGoogle Scholar
  54. Perchiazzi N, Folco L, Mellini M (1999) Volcanic ash bands in the Frontier Mountain and Lichen Hills blue-ice fields, northern Victoria Land. Antarct Sci 11(3):353–361. doi: 10.1017/S0954102099000449 CrossRefGoogle Scholar
  55. Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL, DePaolo DJ (1998) Intercalibrations of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145:117–152. doi: 10.1016/S0009-2541(97)00159-9 CrossRefGoogle Scholar
  56. Renne PR, Mundil R, Balco G, Min K, Ludwig KR (2010) Joint determination of 40K decay constants and 40Ar/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology. Geochim Cosmochim Acta 74:5349–5367. doi: 10.1016/j.gca.2010.06.017 CrossRefGoogle Scholar
  57. Sarna-Wojcicki AM, Bowman HR, Meyer CE, Russell PC, Woodward MJ, McCoy G, Rowe JJ Jr, Baedecker PA, Asaro F, Michael H (1984) Chemical analyses, correlations, and ages of upper Pliocene and Pleistocene ash layers of east-central and Southern California. USGS Professional Paper 1293Google Scholar
  58. Schneider JL, Le Ruyet A, Chanier F, Buret C, Ferrière J, Proust JN, Rosseel JB (2001) Primary or secondary distal volcaniclastic turbidites: how to make the distinction? An example from the Miocene of New Zealand (Mahia Peninsula, North Island). Sediment Geol 145(1):1–22. doi: 10.1016/S0037-0738(01)00108-7 CrossRefGoogle Scholar
  59. Shipp S, Anderson JB, Domack EW (1999) Late Pleistocene-Holocene retreat of the West Antarctic ice-sheet system in the Ross Sea; Part 1. Geophysical results. Geol Soc of Am Bull 111:1468–1516CrossRefGoogle Scholar
  60. Smellie JL (1999) The upper Cenozoic tephra record in the south polar region: a review. Glob Planet Chang 21:51–70. doi: 10.1016/S0921-8181(99)00007-7 CrossRefGoogle Scholar
  61. Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmo- chronology. Earth Planet Sci Lett 36:359–362. doi: 10.1016/0012-821X(77)90060-7 CrossRefGoogle Scholar
  62. Stern C (1990) Tephrochronology of southernmost Patagonia. Natl Geogr Res 6:110–126Google Scholar
  63. Stern C (2008) Holocene tephrochronology record of large explosive eruptions in the southernmost Patagonian Andes. Bull Volcanol 70:435–454. doi: 10.1007/s00445-007-0148-z CrossRefGoogle Scholar
  64. Wilch TI, McIntosh WC, Dunbar NW (1999) Late Quaternary volcanic activity in Marie Byrd Land: potential 40Ar/39Ar-dated time horizons in West Antarctic ice and marine cores. Geol Soc Am Bull 111(10):1563–1580CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • P. Del Carlo
    • 1
    Email author
  • A. Di Roberto
    • 1
  • G. Di Vincenzo
    • 2
  • A. Bertagnini
    • 1
  • P. Landi
    • 1
  • M. Pompilio
    • 1
  • E. Colizza
    • 3
  • G. Giordano
    • 4
  1. 1.Istituto Nazionale di Geofisica e Vulcanologia, Sezione di PisaPisaItaly
  2. 2.Istituto di Geoscienze e Georisorse, CNRPisaItaly
  3. 3.Dipartimento di Matematica e GeoscienzeUniversità di TriesteTriesteItaly
  4. 4.Dipartimento Scienze GeologicheUniversità Roma TreRomeItaly

Personalised recommendations