The association of lava dome growth with major explosive activity (VEI ≥ 4): DomeHaz, a global dataset

Abstract

Investigation of the global eruptive records of particular types of volcanoes is a fundamental and valuable method of understanding what style of activity can be anticipated in the future and can highlight what might be expected or unusual in particular settings. This paper investigates the relationship between large explosions (volcanic explosivity index, VEI ≥ 4) and lava dome growth from 1000 AD to present and develops the DomeHaz database. DomeHaz contains information from 397 dome-forming episodes, including duration of dome growth, duration of pauses in extrusion, extrusion rates, and the timing and magnitude (VEI) of associated large explosions. Major explosive activity, when associated with dome growth, is more likely to occur before dome growth rather than during, or at the end of, dome-forming eruptions. In most cases where major explosive activity has been associated with dome growth, the eruptions occurred at basaltic andesite to andesitic volcanoes (the most common type of dome-forming volcano), but a greater proportion of dacitic and rhyolitic dome growth episodes were associated with large explosions. High extrusion rates (>10 m3 s−1) seem to be associated with large explosions and may inhibit degassing or destabilize existing domes, leading to explosive decompression. Large explosions may, alternatively, be followed by dome growth, which represents the clearing of residual magma from the conduit. Relationships extracted from the global record can be used to construct probability trees for new and ongoing dome-forming eruptions or can be used in conjunction with other types of event trees to aid in forecasting volcanic hazards during a crisis, especially for volcanoes where data are sparse.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Aspinall W (2006) Structured elicitation of expert judgment for probabilistic hazard and risk assessment in volcanic eruptions. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in Volcanology, IAVCEI Spec Pub, Geol Soc of Lond, pp 15-30

  2. Auker MR, Sparks RSJ, Siebert L, Crosweller HS, Ewert J (2013) A statistical analysis of the global historical volcanic fatalities record. J Appl Volcanol 2:2

    Article  Google Scholar 

  3. Barmin A, Melnik O, Sparks RSJ (2002) Periodic behavior in lava dome eruptions. Earth Planet Sci Lett 6184:1–12

    Google Scholar 

  4. Brown SK, Crosweller HS, Sparks RSJ et al (2014) Characterisation of the Quaternary eruption record: analysis of the Large Magnitude Explosive Volcanic Eruptions (LaMEVE) database. J Appl Volcanol 3:5

    Article  Google Scholar 

  5. Calder ES, Luckett R, Sparks RSJ, Voight B (2002) Mechanisms of lava dome instability and generation of rockfalls and pyroclastic flows at Soufriere Hills Volcano, Montserrat. In: Druitt TH & Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 2000, Geol Soc of Lond Mem, 21, pp 173-190, doi:10.1144/GSL.MEM.2002.021.01.08

  6. Calder ES, Lavallée Y, Kendrick JE, Bernstein M (2015) Lava dome eruptions. In: Sigurdsson H, Houghton B, Rymer H, Stix J, McNutt S (eds) Encyclopedia of volcanoes, 2nd edn. Academic Press, San Diego

    Google Scholar 

  7. Carey S, Sigurdsson H (1985) The May 18, 1980 eruption of Mount St. Helens 2. Modeling of dynamics of the Plinian phase. J Geophys Res 90:2948–2958. doi:10.1029/JB090iB04p02948

    Article  Google Scholar 

  8. Carey S, Sigurdsson H (1989) The intensity of Plinian eruptions. Bull Volcanol 51:28–40. doi:10.1007/BF01086759

    Article  Google Scholar 

  9. Castro JM, Schipper CI, Mueller SP, Militzer AS, Amigo A, Parejas CS, Jacob D (2013) Storage and eruption of near-liquidus rhyolite magma at Cordón Caulle, Chile. Bull Volcanol 75:1–17. doi:10.1007/s00445-013-0702-9

    Article  Google Scholar 

  10. Collombet M (2009) Two-dimensional gas loss for silicic magma flows: toward more realistic numerical models. Geophys J Int 177:309–318. doi:10.1111/j.1365-246X.2008.04086.x

    Article  Google Scholar 

  11. Costa F, Andreastuti S, Bouvet de Maisonneuve C, Pallister JS (2013) Petrological insights into the storage conditions, and magmatic processes that yielded the centennial 2010 Merapi explosive eruption. J Volcanol Geotherm Res 261:209-235. doi:10.1016/j.jvolgeores.2012.12.025

  12. Coles SG, Sparks RSJ (2006) Extreme value methods for modelling historical series of large volcanic magnitudes. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in Volcanology, Special Publication of IAVCEI, Geological Society, London, pp. 47-56

  13. Crosweller HS, Arora B, Brown SK et al (2012) Global database on large magnitude explosive volcanic eruptions (LaMEVE). J Appl Volcanol 1:1–13. doi:10.1186/2191-5040-1-4

    Article  Google Scholar 

  14. Daag AS, Dolan MT, Laguerta EP, Meeker GP, Newhall CG, Pallister JS, Solidum RU (1996) Growth of a postclimactic lava dome at Mount Pinatubo, July-October 1992. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Phillippines. University of Washington Press, Seattle, pp 647–664

    Google Scholar 

  15. Deligne NI, Coles SG, Sparks RSJ (2010) Recurrence rates of large explosive volcanic eruptions. J Geophys Res 115:1–16. doi:10.1029/2009JB006554

    Google Scholar 

  16. Denlinger RP, Hoblitt RP (1999) Cyclic behavior of silicic volcanoes. Geology 27:459–462. doi:10.1130/0091-7613(1999)027<0459:CEBOSV>2.3.CO;2

    Article  Google Scholar 

  17. Diller K, Clarke AB, Voight B, Neri A (2006) Mechanisms of conduit plug formation: implications for vulcanian explosions. Geophys Res Lett 33:1–6. doi:10.1029/2006GL027391

    Google Scholar 

  18. Druitt TH & Kokelaar BP (eds) (2002) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 2000, 21st edn. Geol Soc of Lond Mem

  19. Furlan C (2010) Extreme value methods for modelling historical series of large volcanic magnitudes. Stat Modell 10:113-132 doi:10.1177/1471082X0801000201

  20. Harris AJ, Rose WI, Flynn LP (2003) Temporal trends in lava dome extrusion at Santiaguito 1922–2000. Bull Volcanol 65:77–89. doi:10.1007/s00445-002-0243-0

    Google Scholar 

  21. Jaupart C, Allègre CJ (1991) Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet Sci Lett 102:413–429. doi:10.1016/0012-821X(91)90032-D

    Article  Google Scholar 

  22. Jousset P, Pallister J, Surono (2013) The 2010 eruption of Merapi volcano. J Volcanol Geotherm Res 261:1–6. doi:10.1016/j.jvolgeores.2013.05.008

    Article  Google Scholar 

  23. Lacroix A (1904) La Montagne Pelee et ses Eruptions. Masson, Paris

    Google Scholar 

  24. Lara LE, Moreno R, Amigo Á, Hoblitt RP, Pierson TC (2013) Late Holocene history of Chaitén Volcano: new evidence for a 17th century eruption. Andean Geol 40:249–261

    Google Scholar 

  25. Lipman P, Mullineaux DR, eds. (1981) The 1980 eruptions of Mount St. Helens, Washington. US Geol Surv Prof Paper 1250, 844 p

  26. Loughlin SC, Miller AD, Aspinall WP (1998) World-wide dome-building eruptions: summary of dome growth, periods of dome repose and post-eruption characteristics. Montserrat Volcano Observatory Open File Rep 98-15

  27. Loughlin SC, Luckett R, Ryan GA (2010) An overview of lava dome evolution, dome collapse and cyclicity at Soufriere Hills Volcano, Montserrat, 2005-2007. Geophys Res Lett 37:1–6. doi:10.1029/2010GL042547

    Google Scholar 

  28. Major JJ, Lara LE (2013) Overview of Chaitén Volcano, Chile, and its 2008-2009 eruption. Andean Geol 2:196–215. doi:10.5027/andgeoV40n2-a01

    Google Scholar 

  29. Mei ETW, Lavigne F, Picquout A, de Bélizal E, Brunstein D, Grancher D, Sartohadi J, Cholik N, Vidal C (2013) Lessons learned from the 2010 evacuations at Merapi volcano. J Volcanol Geotherm Res 261:348–365. doi:10.1016/j.jvolgeores.2013.03.010

    Article  Google Scholar 

  30. Melnik O, Sparks RSJ (1999) Nonlinear dynamics of lava dome extrusion. Nature 402:37–41

    Article  Google Scholar 

  31. Melnik O, Sparks RSJ (2005) Controls on conduit magma flow dynamics during lava dome building eruptions. J Geophys Res 110:1–21. doi:10.1029/2004JB003183

    Google Scholar 

  32. Moore JG, Albee WC (1981) Topographic and structural changes, March-July 1980—photogrammetric data. In: Lipman PW, Mullineaux DR (eds) The 1980 eruptions of Mount St. Helens, Washington. US Geol Surv Prof Paper 1250, pp 123-134

  33. Naranjo CG, Stern C (2004) Holocene tephrochronology of the southernmost part (42°30’-45°S) of the Andean Southern Volcanic Zone. Rev Geol Chile 31:225–240

    Google Scholar 

  34. Newhall CG, Hoblitt RP (2002) Constructing event trees for volcanic crises. Bull Volcanol 64:3–20. doi:10.1007/s004450100173

    Article  Google Scholar 

  35. Newhall CG, Melson WG (1983) Explosive activity associated with the growth of volcanic domes. J Volcanol Geophys Res 17:111–131

    Article  Google Scholar 

  36. Newhall CG, Punongbayan RS (1996) Fire and mud: eruptions and lahars of Mount Pinatubo, Philippines. University of Washington Press, Seattle

    Google Scholar 

  37. Newhall CG, Bronto S, Alloway BV et al (2000) 10,000 years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications. J Volcanol Geotherm Res 100:9–50. doi:10.1016/S0377-0273(00)00132-3

    Article  Google Scholar 

  38. Norton GE, Watts RB, Voight B, et al. (2002) Pyroclastic flow and explosive activity at Soufrière Hills Volcano, Montserrat, during a period of virtually no magma extrusion (March 1998 to November 1999). In: Druitt TH & Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 2000, Geol Soc of Lond Mem, 21, pp 467-481, doi:10.1144/GSL.MEM.2002.021.01.21

  39. Odbert HM, Stewart RC, Wadge G (2014) Cyclic phenomena at the Soufrière Hills Volcano, Montserrat. In: Wadge G, Robertson REA, Voight B (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 2000 to 2010. 39th edn. Geol Soc of Lond Mem, pp. 41-60

  40. Ogburn SE, Calder ES (2006) Dome-building eruptions: a world-wide summary of lava domes associated with major explosive activity (VEI ≥4). Montserrat Volcano Observatory Open File Rep 06-08

  41. Ortiz-Guerrero N (2008) Development and analysis of global database on explosive volcanism. Thesis, University of Bristol

  42. Pallister JS, Hoblitt RP, Meeker GP, Knight RJ, Siems DF (1996) Magma mixing at Mount Pinatubo: petrographic and chemical evidence from the 1991 deposits. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Phillippines. University of Washington Press, Seattle, pp 687–731

    Google Scholar 

  43. Pallister JS, Schneider DJ, Griswold JP, Keeler RH, Burton WC, Noyles C, Newhall CG, Ratdomopurbo A (2013a) Merapi 2010 eruption—chronology and extrusion rates monitored with satellite radar and used in eruption forecasting. J Volcanol Geotherm Res 261:144–152. doi:10.1016/j.jvolgeores.2012.07.012

    Article  Google Scholar 

  44. Pallister JS, Diefenbach AK, Burton WC, Muñoz J, Griswold JP, Lara LE, Lowenstern JB, Valenzuela CE (2013b) The Chaitén rhyolite lava dome: eruption sequence, lava dome volumes, rapid effusion rates and source of the rhyolite magma. Andean Geol 40:277–294

    Google Scholar 

  45. Ratdomopurbo A, Beauducel F, Subandriyo J, Agung Nandaka IGM, Newhall CG, Sayudi DS, Suparwaka H (2013) Overview of the 2006 eruption of Mt. Merapi. J Volcanol Geotherm Res 261:87–97. doi:10.1016/j.jvolgeores.2013.03.019

    Article  Google Scholar 

  46. Rose WI (1973) Pattern and mechanism of volcanic activity at the Santiaguito volcanic dome, Guatemala. Bull Volcanol 37:73–94. doi:10.1007/BF02596881

    Article  Google Scholar 

  47. Rose WI (1987) Santa María, Guatemala: bimodal soda-rich calc-alkalic stratovolcano. J Volcanol Geotherm Res 33:109–129. doi:10.1016/0377-0273(87)90056-4

    Article  Google Scholar 

  48. Sato H, Fujii T, Nakada S (1992) Crumbling of dacite dome lava and generation of pyroclastic flows at Unzen volcano. Nature 360:664–666

    Article  Google Scholar 

  49. Scientific Advisory Committee (2006) Seventh Report of the Scientific Advisory Committee on Montserrat Volcanic Activity Part II: technical report. Assessment of the hazards and risks associated with the Soufrière Hills Volcano

  50. Scientific Advisory Committee (2014) Nineteenth Report of the Scientific Advisory Committee on Montserrat Volcanic Acitivity Part II: full report. Assessment of the hazards and risks associated with the Soufrière Hills Volcano

  51. Sherrod DR, Scott WE, Stauffer PH, eds. (2008) A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006. US Geol Surv Prof Paper 1750, 856 p

  52. Siebert L, Simkin T (2002-) Volcanoes of the world: an illustrated catlog of holocene volcanoes and their eruptions. Smithson Inst Glob Volcanism Progr Digit Inf Ser GVP-3, http://www.volcano.si.edu/gvp/world

  53. Simkin T, Siebert L, McClelland L, Bridge D (1981) Volcanoes of the world: a regional directory, gazetteer, and chronology of volcanism during the last 10,000 years. Hutchison Ross Publishing Co, Stroudsburg

    Google Scholar 

  54. Siswowidjoyo S, Suryo I, Yokoyama I (1995) Magma eruption rates of Merapi volcano, Central Java, Indonesia during one century (1890–1992). Bull Volcanol 57:111–116

    Article  Google Scholar 

  55. Sparks RSJ (1997) Causes and consequences of pressurisation in lava dome eruptions. Earth Planet Sci Lett 150:177–189

    Article  Google Scholar 

  56. Sparks RSJ, Young SR, Barclay J et al (1998) Magma production and growth of the lava dome of the Soufrière Hills Volcano, Montserrat, West Indies: November 1995 to December 1997. Geophys Res Lett 25:3421–3424. doi:10.1029/98GL00639

    Article  Google Scholar 

  57. Stoiber R, Rose WI (1969) Recent volcanic and fumarolic activity at Santiaguito volcano, Guatemala. Bull Volcanol 33:475–502. doi:10.1007/BF02596520

    Article  Google Scholar 

  58. Surono JP, Pallister J, Boichu M et al (2012) The 2010 explosive eruption of Java’s Merapi volcano-A ‘100-year’ event. J Volcanol Geotherm Res 241–242:121–135. doi:10.1016/j.jvolgeores.2012.06.018

    Article  Google Scholar 

  59. Swanson D, Holcomb R (1990) Regularities in growth of the Mount St. Helens dacite dome, 1980–1986. IAVCEI Proc Volcanol 2:3–24

    Article  Google Scholar 

  60. Venezky D, Newhall C (2007) WOVOdat design document: the schema, table descriptions, and create table statements for the Database of Worldwide Volcanic Unrest (WOVOdat Version 1.0). US Geol Surv Open File Rep 2007-1117, 177 pp

  61. Venzke E, Wunderman RW, McClelland L, et al. (2002-) Global volcanism, 1968 to the present. Smithson Inst Glob Volcanism Progr Digit Inf Ser GVP-4, http://www.volcano.si.edu/reports

  62. Voight B, Constantine EK, Siswowidjoyo S, Torley R (2000) Historical eruptions of Merapi volcano, central Java, Indonesia, 1768-1998. J Volcanol Geotherm Res 100:69–138. doi:10.1016/S0377-0273(00)00134-7

    Article  Google Scholar 

  63. Wadge G, Herd R, Ryan G, Calder ES (2010) Lava production at Soufrière Hills Volcano, Montserrat: 1995–2009. Geophys Res Lett 37:1–5. doi:10.1029/2009GL041466

    Google Scholar 

  64. Wadge G, Robertson REA, Voight B (eds) (2014a) The eruption of Soufrière Hills Volcano, Montserrat, from 2000 to 2010, 39th edn. Geol Soc of Lond Mem

  65. Wadge G, Voight B, Sparks RSJ, Cole PD, Loughlin SC, Robertson REA (2014b) An overview of the eruption of Soufriere Hills Volcano, Montserrat from 2000 to 2010. In: Wadge G, Robertson REA, Voight B (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 2000 to 2010, 39th edn. Geol Soc of Lond Mem, pp. 1-40. doi:10.1144/M39.1

  66. Wright H, Adreastuti S, Budianto A, Gunawan H, Pallister J, McCausland W (2014) Construction of a probabilistic volcanic event tree: Sinabung volcano, Indonesia 2013-ongoing. Cities on Volcanoes 8, Yogyakarta, Indonesia

  67. Wolfe EW, Hoblitt RP (1996) Overview of the eruptions. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and lahars of Mount Pinatubo, Phillippines. University of Washington Press, Seattle, pp 3–20

    Google Scholar 

  68. Yoshimoto M, Nakada S, Hokanishi N, Iguchi M, Ohkura T (2013) Eruption history and future scenario of Sinabung Volcano, North Sumatra. IAVCEI Gen Assem, Kagoshima, Japan, 4 W-4D-P14

Download references

Acknowledgments

The development and analysis of DomeHaz was supported by the National Science Foundation (grant nos. DMS 1228217, DMS 0757367, EAR 0809543), a National Science Foundation Integrative Graduate Education and Research Traineeship (IGERT) in Geographic Information Science, the British Geological Survey, and the Global Volcano Model. Many thanks go to John Pallister and Henry Odbert for their helpful insights and constructive reviews.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. E. Ogburn.

Additional information

Editorial responsibility: C. Oppenheimer

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ogburn, S.E., Loughlin, S.C. & Calder, E.S. The association of lava dome growth with major explosive activity (VEI ≥ 4): DomeHaz, a global dataset. Bull Volcanol 77, 40 (2015). https://doi.org/10.1007/s00445-015-0919-x

Download citation

Keywords

  • Lava dome
  • Database
  • Explosive eruptions
  • Probability trees