Skip to main content
Log in

Craters of elevation revisited: forced-folds, bulging and uplift of volcanoes

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The eighteenth/nineteenth century ‘craters of elevation’ theory required magma to uplift strata, doming the surface and creating a central down-fallen ‘crater’ or graben. Exponents of craters of elevation attempted to apply it to explain the origin of all volcanoes, and rapidly the contemporary competing ‘craters of eruption’ theory replaced it as the paradigm for volcano construction. Several historic examples have shown that intrusions can cause uplift, termed bulges and can create features like those proposed for craters of elevation (e.g. at Usu 1944, Bezymianny 1955 and Mt. St. Helens 1980). Work on sedimentary basins that have had igneous activity has shown that intrusions create ‘forced folds’ that uplift and deform strata in a similar way to that originally proposed for craters of elevation. In view of the above, we investigate large-scale intrusion-related topographic changes at two sites where the craters of elevation theory was developed: the monogenetic volcanoes of the Chaîne des Puys, France and the Teide stratovolcano, Tenerife. We combine observations of such features with examples of forced folding to integrate the two fields of research. Our observations in the Chaîne des Puys show that: (1) the Petit Puy de Dôme has a bulge of up to 150-m uplift. The uplift has a central depressed area (a graben), a dense network of normal faults, basal thrusts and an aborted landslide. (2) The Grosmanaux volcano is a forced fold created by uplift of a previously flat-lying area, and has dense faulting and a graben on the resultant topographic bulge. It was the site also of a major vulcanian eruption from the associated Kilian crater. (3) The Gouttes volcano was uplifted by an intrusion like the Petit Puy de Dôme, but then collapsed to generate a landslide and lateral blast. (4) Excavation in the Lemptégy Volcano exposes intra-eruption intrusions with associated uplift, providing examples in cross-section of the internal deformation likely to be found inside other Chaîne des Puys uplifted bulges. On Teide, a bulge near the summit shows similar structures and surface tilting as seen on the Petit Puy de Dôme and this bulging may have formed during the eruption of the Lavas Negras, the most recent activity on the summit area. Fault scarps on Teide also expose small cryptodomes, like those seen at Lemptégy. These examples, coupled with field studies on eroded intrusions, data on forced folds in basins and analogue models, show how large-scale topographic remodelling and structural change can be created by intrusions. These can rapidly and significantly change the volcanic edifice. A crater of elevation bulge, or forced fold that is stabilised by the cooling of the intrusion, will remain an important structural element in a volcano. This process starts even at the small scale of monogenetic volcanoes, and could occur through the lifetime of any growing stratovolcano. Such activity may be commonplace, but may be masked by concomitant eruption or removed by subsequent collapse. Monitoring and hazard strategies should be ready to deal with such large-scale events that will seriously modify the eruptive activity and stability of a volcano within days or weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdelmalak MM, Mourgues R, Galland O, Bureau D (2012) Fracture mode analysis and related surface deformation during dyke intrusion: results from 2D experimental modelling. Earth Planet Sci Lett 359–360:93–105

    Article  Google Scholar 

  • Ablay G, Martí J (2000) Stratigraphy, structure, and volcanic evolution of the Pico Teide-Pico Viejo formation, Tenerife, Canary Islands. J Volcanol Geotherm Res 103:175–208

    Article  Google Scholar 

  • Acocella V (2000) Space accommodation by roof lifting during pluton emplacement at Amiata (Italy). Terra Nova 12(4):149–155

    Article  Google Scholar 

  • Barberi F, Varet J (1970) The Erta Ale Volcanic Range (Danakil Depression, Northern Afar, Ethiopia). Bull Volcanol 34:848–917

    Article  Google Scholar 

  • Barnett ZA, Gudmundsson A (2014) Numerical modelling of dykes deflected into sills to form a magma chamber. J Volcanol Geotherm Res 281:1–96

    Article  Google Scholar 

  • Belousov A, Voight B, Belousova M (2006) The 1956 eruption of Bezymianny and similar events worldwide: eruptive sequences, deposits and mechanisms. pp.43–48. Proceedings of International Workshop: 50-th anniversary of the 1956 Bezymianny eruption, Petropavlovsk, Russia. E.I. Gordeev ed

  • Boivin P, Besson JC, Briot D, Camus G, De Goër de Hervé A, Gourgaud A, Labazuy P, Langlois E, de Larouzière FD, Livet M, Mergoil J, Miallier D, Morel JM, Vernet G, Vincent PM (2009) Volcanologie de la Chaîne des Puys Massif Central Français, 5th Edition, scale 1:25 000, 1 sheet

  • Borgia A (1994) The dynamic basis for volcanic spreading. J Geophys Res Solid Earth 99(B9):17791–17804

    Article  Google Scholar 

  • Borgia A, van Wyk de Vries B (2003) The volcano-tectonic evolution of Concepción, Nicaragua. Bull Volcanol 65:248–266

    Article  Google Scholar 

  • Borgia A, Ferrari L, Pasquarè G (1992) Importance of gravitational spreading in the tectonic and volcanic evolution of Mount Etna. Nature 357:231–235

    Article  Google Scholar 

  • Brousse R (1978) Trois grands sujets de débats en terre volcanique d’Auvergne. Deuxième partie: Origine et construction des volcans. Troisième partie: Cratères de soulèvement. Periodique du Comité francais d’histoire de la géologie, 1e série, n° 15: 15–35

  • Brown DJ, Bell BR (2006) Intrusion-induced uplift and mass wasting of the Palaeogene volcanic landscape of Ardnamurchan, NW Scotland. J Geol Soc 163:29–36

    Article  Google Scholar 

  • Bunger AP, Cruden AR (2011) Modeling the growth of laccoliths and large mafic sills: role of magma body forces. J Geophys Res 116(B2), B02203

    Google Scholar 

  • Burat A (1833) Description des terrains volcaniques de la France Centrale. Ed. Levrault, Paris, 342p

    Google Scholar 

  • Carracedo JC, Rodriguez Badiola E, Guillou H, Paterne M, Scaillet S, Perez Torrado H, Paris R, Fra-Paleo U, Hansen A (2007) Eruptive and structural history of Teide volcano and rift zones of Tenerife, Canary Islands. Geol Soc Am Bull 119(9/10):1027–1051

    Article  Google Scholar 

  • Carter A, Wyk V, de Vires B, Bachèlery P, Briole P (2006) Pits, rifts and slumps: the summit structure of Piton de la Fournaise. Bull Volcanol 67:741–756

    Google Scholar 

  • Corry CE (1988) Laccoliths; mechanisms of emplacement and growth. Geol Soc of Am Spec Pap 110 p

  • Cosgrove JW, Hillier RD (1999) Forced-fold development within Tertiary sediments of the Alba Field, UKCS: evidence of differential compaction and post-depositional sandstone remobilization. Geol Soc Lond Spec Publ 169(1):61–71

    Article  Google Scholar 

  • de Beaumont EL (1835) Recherches sur la structure et l’origine du Mont Etna. C R Séances Acad Sci Paris 1:429–433

    Google Scholar 

  • De Guidi G, Imposa S, Scudero S, Palano M (2014) New evidence for Late Quaternary deformation of the substratum of Mt. Etna volcano (Sicily, Italy): clues indicate active crustal doming. Bull Volcanol 76:1–13

    Article  Google Scholar 

  • de Ramond P (1815) Les Monts Dômes. Memoirs Academy of Science Inst. France, p. 1–138

  • de Saint-Blanquat M, Habert G, Horsman E, Morgan SS, Tikoff B, Launeau P, Gleizes G (2006) Mechanisms and duration of non-tectonically assisted magma emplacement in the upper crust: the Black Mesa pluton, Henry Mountains, Utah. Tectonophysics 428:1–31

    Article  Google Scholar 

  • del Potro R, Pinkerton H, Hürlimann M (2009) An analysis of the morphological, geological and structural features of Teide stratovolcano, Tenerife. J Volcanol Geotherm Res 181:89–105

    Article  Google Scholar 

  • Delcamp A, van Wyk de Vries B, James MR, Gailler LS, Lebas E (2012) Relationships between volcano gravitational spreading and magma intrusion. Bull Volcanol 74:743–765

    Article  Google Scholar 

  • Delcamp A, van Wyk de Vries B, Kervyn M (2014) The Lemptégy Scoria Cone. Chaîne Puys France. doi:10.1130/GES01007.1

    Google Scholar 

  • Dixon JM, Simpson DG (1987) Centrifuge modelling of laccolith intrusion. J Struct Geol 9:87–103

    Article  Google Scholar 

  • Donnadieu F, Merle O (1998) Experiments on the indentation process during cryptodome intrusions: new insights into Mount St. Helens deformation. Geology 26:79–82

    Article  Google Scholar 

  • Druitt TH, Costa F, Deloule E, Dungan M, Scaillet B (2012) Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482:77–80

    Article  Google Scholar 

  • du Toit AI (1920) The Karoo dolerites. Trans Geol Soc S Afr 33:1–42

    Google Scholar 

  • Duffield WA, Jackson MD, Smith JG, Lowenstern JB, Clynne MA (1996) Structural doming over an upper crustal magma body at Alid, Eritrea. Eos Trans Am Geophys U 7:F792

    Google Scholar 

  • Duffield WA, Bullen TD, Clynne MA, Fournier RO, Janik CJ, Lanphere MA, Lowenstern J, Smith JG, Giorgis L, Kahsai G, Mariam K, Tesfai T (1997) Geothermal potential of the Alid volcanic center, Danakil Depression, Eritrea. U S Geol Surv Open File Rpt 97–291:1–62

    Google Scholar 

  • Durenoy P, Elie de Beaumont (1833) Mémoire sur les groupes du Cantal et du Mont-Dore et surles soulèvements auxquels ces montagnes doivent leur relief. Ann Mines t.3: 531–714

  • Galland O (2012) Experimental modelling of ground deformation associated with shallow magma intrusions. Earth Planet Sci Lett 317–318:145–156

    Article  Google Scholar 

  • Galland O, Scheibert J (2013) Analytical model of surface uplift above axisymmetric flat-lying magma intrusions: implications for sill emplacement and geodesy. J Volcanol Geotherm Res 253:114–130

    Article  Google Scholar 

  • Galland O, Hallot E, Cobbold PR, Ruffet G, de Bremond d’Ars J (2007) Volcanism in a compressional Andean setting: a structural and geochronological study of Tromen volcano (Neuquén province, Argentina). Tectonics 26. doi:10.1029/2006TC002011

  • Galland O, Planke S, Malthe-Sørenssen A, Neumann E-R (2009) Experimental modelling of shallow magma emplacement: application to saucer-shaped intrusions. Earth Planet Sci Lett 277:373–383

    Article  Google Scholar 

  • Gilbert GK (1880) Report on the geology of the Henry Mountains, 2nd edn. United States Geological Survey, Washington, D.C

    Google Scholar 

  • Gorshkov GS (1959) Gigantic eruption of the volcano Bezymianny. Bull Volcanol 20:77–109

    Article  Google Scholar 

  • Goulty NR, Schofield N (2008) Implications of simple flexure theory for the formation of saucer-shaped sills. J Struct Geol 30(7):812–817

    Article  Google Scholar 

  • Grosse P, Euillades PA, Euillades LD, van Wyk de Vries B (2013) A global database of composite volcano morphometry. Bull Volcanol 76:748

    Google Scholar 

  • Gudmundsson A, Friese N, Galindo I, Philipp SL (2008) Dike-induced reverse faulting in a graben. Geology 36(2):123–126

    Article  Google Scholar 

  • Gudmunsson (2011) Deflection of dykes into sills and magma chamber formation. Tectonophysics 500:50–64

    Article  Google Scholar 

  • Hansen DM, Cartwright JA (2006) The three-dimensional geometry and growth of forced folds above saucer-shaped igneous sills. J Struct Geol 28:1520–1535

    Article  Google Scholar 

  • Hawkes L, Hawkes HK (1933) The Sandfell Laccolith and ‘Dome of Elevation’. Q J Geol Soc 89:379–398

    Article  Google Scholar 

  • Jackson M (1997) Processes of laccolithic emplacement in the Southern Henry Mountains, Southeastern Utah. In: Friedman JD, Huffman AC (eds.) Laccolith complexes of Southeastern Utah: time of emplacement and tectonic setting - Workshop proceedings, U.S. Geol Surv Bull 2158:51–59

  • Jackson MD, Pollard DD (1990) Flexure and faulting of sedimentary host rocks during growth of igneous domes, Henry Mountains, Utah. J Struct Geol 12:185–206

    Article  Google Scholar 

  • Jackson CA-L, Schofield N, Golenkov B (2013) Geometry and controls on the development of igneous sill-related forced folds: a 2-D seismic reflection case study from offshore southern Australia. Geol Soc Am Bull 25:1874–1890

    Article  Google Scholar 

  • Johnson AM, Pollard DD (1973) Mechanics of growth of some laccolithic intrusions in the Henry mountains, Utah, I: field observations, Gilbert’s model, physical properties and flow of the magma. Tectonophysics 18:261–309

    Article  Google Scholar 

  • Katsui Y, Komuro H, Uda T (1985) Development of faults and growth of Usu-Shinzan cryptodome in 1977–1982 at Usu Volcano, North Japan. Journal of the Faculty of Science, Hokkaido University. Series 4, Geol Mineral 21(3): 339–362

  • Kavanagh JL, Menand T, Sparks RSJ (2006) An experimental investigation of sill formation and propagation in layered elastic media. Earth Planet Sci Lett 245:799–813

    Article  Google Scholar 

  • Koch F, Johnson A, Pollard D (1981) Monoclinal bending of strata over laccolithic intrusions. Tectonophysics 74:T21–T31

    Article  Google Scholar 

  • Lagmay AMF, van Wyk de Vries B, Kerle N, Pyle DM (2000) Volcano instability induced by strike-slip faulting. Bull Volcanol 62:331–346

    Article  Google Scholar 

  • Lipman PW, Moore JG, Swanson DA (1981) Bulging of the northern flank before the May 18 eruption: geodetic data. US Geol Surv Prof Pap 1250:143–156

    Google Scholar 

  • Luhr JF, Simkin T (1993) Paricutin: the volcano born in a Mexican Cornfield. Geoscience Press, Phoenix, p 427

    Google Scholar 

  • Lyell C (1830) Principles of geology, being an attempt to explain the former changes of the earth’s surface by reference to causes now in operation. Murray, London, 3 vols

  • Lyell C (1858) On the structure of lavas which have consolidated on steep slopes with remarks on the mode of origin of Mount Etna, and on the theory of “craters of elevation”. Phil Trans R Soc London 148:703–786

    Article  Google Scholar 

  • Magee C, Hunt-Stewart E, Jackson CA-L (2013a) Volcano growth mechanisms and the role of sub-volcanic intrusions: insights from 2D seismic reflection data. Earth Planet Sci Lett 373:41–53

    Article  Google Scholar 

  • Magee C, Briggs F, Jackson CA-L (2013b) Lithological controls on igneous intrusion-induced ground deformation. J Geol Soc 170:853–856

    Article  Google Scholar 

  • Magee C, Jackson CL, Schofield N (2014) Diachronous sub-volcanic intrusion along deep-water margins: insights from the Irish Rockall Basin. Basin Res 26:85–105

    Article  Google Scholar 

  • Marini A (1938) Il Vulcano Alid nella Colonia Eritrea. L’Universo. 19:51–65, 20:131–170

  • Márquez A, Lopez I, Herrera R, Martín-González F, Izquierdo T, Carreño F (2008) Spreading and potential instability of Teide volcano, Tenerife, Canary Islands. Geophys Res Lets 35(5). doi:10.1029/2007GL032625

  • Márquez A, Herrera R, Duvert A, Gómez-de la Peña L, Granja Bruña J, Llanes Estrada M, van Wyk de Vries B (2011) The role of dome intrusions and flank spreading in the morphology of Teide volcano (Canary Islands). In AGU Fall Meet Abs (1:2599)

  • Mathieu L, van Wyk de Vries B (2009) Volcano-tectonic deformation in the Mull Igneous complex. Bull Volcanol 71:1133–1148

    Article  Google Scholar 

  • Mathieu L, van Wyk de Vries B, Holohan EP, Troll VR (2008) Dykes, cups, saucers and sills: analogue experiments on magma intrusion into brittle rocks. Earth Planet Sci Lett 271:1–13

    Article  Google Scholar 

  • Menand T (2008) The mechanics and dynamics of sills in elastic layered media and their implications for the growth of laccoliths. Earth Planet Sci Lett 267:93–99

    Article  Google Scholar 

  • Menand T, de Saint-Blanquat M, Annen C (Eds) (2011) Emplacement of magma pulses and growth of magma bodies. Tectonophysics 500:1–2

  • Merle O, Vendeville B (1992) Modélisation analogique de chevauchements induits par des intrusions magmatiques. C R Acad Sci Paris 315, série II, 1541–1547

  • Merle O, Brothelande E, Lenat J-F, Bachelery P, Garaebity E (2013) A structural outline of the Yenkahe volcanic resurgent dome (Tanna Island, Vanuatu Arc, South Pacific). J Volcanol Geotherm Res 268:64–72

    Article  Google Scholar 

  • Michaut C (2011) Dynamics of magmatic intrusions in the upper crust: theory and applications to laccoliths on Earth and the Moon. J Geophys Res 116, B05205

    Google Scholar 

  • Michaut C, Manga M (2014) Domes, pits, and small chaos on Europa produced by water sills. J Geophys Res Planets 119:550–573

    Article  Google Scholar 

  • Minakami T, Ishikawa T, Yagi K (1951) The 1944 eruption of Volcano Usu in Hokkaido, Japan. Bull Volcanol 11:45–160

    Article  Google Scholar 

  • Moore JG, Albee WC (1981) Topographic and structural changes, March–July 1980—photogrammetric data. US Geol Surv Prof Pap 1250:123–134

    Google Scholar 

  • Morgan SA, Horsman E, Tikoff B, de Saint Blanquat M, Habert G (2008) Emplacement of multiple magma sheets and wall rock deformation: Trachyte Mesa intrusion, Henry Mountains, Utah. J Struct Geol 30:491–512

    Article  Google Scholar 

  • Petronis MS, Delcamp A, van Wyk de Vries B (2013) Magma emplacement into the Lemptégy scoria cone (Chaîne Des Puys, France) explored with structural, anisotropy of magnetic susceptibility, and Paleomagnetic data. Bull Volcanol 75:753

    Article  Google Scholar 

  • Pollard DD, Johnson AM (1973) Mechanics of growth of some laccolithic intrusions in the Henry Mountains, Utah, II. Bending and failure of overburden layers and sill formation. Tectonophysics 18:311–354

    Article  Google Scholar 

  • Polteau S, Mazzini A, Galland O, Planke S, Malthe-Sørenssen A (2008) Saucer-shaped intrusions: occurrences, emplacement and implications. Earth Planet Sci Lett 266:195–204

    Article  Google Scholar 

  • Quidelleur X, Gillot PY, Soler V, Lefèvre JC (2001) K/Ar dating extended into the last millennium: application to the youngest effusive episode of the Teide volcano (Spain). Geophys Res Lett 28(16):3067–3070

    Article  Google Scholar 

  • Reid ME, Keith TE, Kayen RE, Iverson NR, Iverson RM, Brien DL (2010) Volcano collapse promoted by progressive strength reduction: new data from Mount St. Helens. Bull Volcanol 72(6):761–766

    Article  Google Scholar 

  • Rocchi S, Westerman DS, Dini S, Innocenti F, Tonarini S (2002) Two-stage growth of laccoliths at Elba Island, Italy. Geology 30:983–986

    Article  Google Scholar 

  • Román-Berdiel T, Gapais D, Brun J-P (1995) Analogue models of laccolith formation. J Struct Geol 17:1337–1346

    Article  Google Scholar 

  • Scrope GP (1827) Memoir on the geology of Central France; including the volcanic formations of Auvergne, the Velay and the Vivarais, with a volume of maps and plates. Longman, London

    Google Scholar 

  • Scrope GP (1858) The geology and extinct volcanoes of Central France. John Murray, London

    Google Scholar 

  • Shoulders SJ, Cartwright J (2004) Constraining the depth and timing of large-scale conical sandstone intrusions. Geology 32:661–664

    Article  Google Scholar 

  • Staudigel H, Feraud G, Giannerini G (1986) The history of intrusive activity on the island of La Palma (CANARY Islands). J Volcanol Geotherm Res 27:299–322

    Article  Google Scholar 

  • Stearns DW (1978) Faulting and forced folding in the Rocky Mountains foreland. Geol Soc Am Mem 151:1–38

    Article  Google Scholar 

  • Thomson K, Schofield N (2008) Lithological and structural controls on the emplacement and morphology of sills in sedimentary basins. Geol Soc Lond Spec Publ 302:31–44

    Article  Google Scholar 

  • Tibaldi A, Pasquaré FA (2008) A new Mode of inner volcano growth—the “flower intrusive structure”. Earth Planet Sci Lett 271:201–208

    Article  Google Scholar 

  • Tibaldi A, Vezzoli L, Pasquarè FA, Rust D (2008) Strike slip fault tectonics and theemplacement of sheet-laccolith systems: the Thverfell case study (SW Iceland). J Struct Geol 30:274

    Article  Google Scholar 

  • Tobita M, Murakami M, Nakagawa H, Yarai H, Fujiwara S, Rosen PA (2001) 3-D surface deformation of the 2000 Usu Eruption measured by matching of SAR images. Geophys Res Lett 28(22):4291–4294

    Article  Google Scholar 

  • Troll VR, Walter T, Schminke H-U (2002) Cyclic caldera collapse: piston or piecemeal subsudence? Field and experimental evidence. Geology 30:135–138

    Article  Google Scholar 

  • Trude J, Cartwright J, Davies RJ, Smallwood J (2003) New technique for dating igneous sills. Geology 31:813–816

    Article  Google Scholar 

  • Tweto O (1951) Form and structure of sills near Pando, Colorado. Geol Soc Am Bull 62:507–532

    Article  Google Scholar 

  • Tyrell GM (1928) The geology of Arran. PhD Thesis, Glasgow University, British Geological Survey

  • van Bemmelen RW (1949) The Geology of Indonesia: General Geology of Indonesia and Adjacent Archipelagos. Gov. Print. Off., The Hague, Netherlands

  • van Wyk de Vries B (1993) Tectonic and magma evolution of Nicaraguan volcanic systems. PhD Thesis, Open University, Milton Keynes, United Kingdom

  • van Wyk de Vries B, Grosse P, Alvarado G (2006) Volcanism and volcanic landforms. In: Bundsschuh, Alvarado (Eds) The geology of Central America, 101-133 p. Bjorntrager, Germany

  • van Wyk de Vries B, Francis PW (1997) Catastrophic collapse at stratovolcanoes induced by gradual volcano spreading. Nature 387:387–390

    Article  Google Scholar 

  • van Wyk de Vries B, Matela R (1998) Styles of volcano-induced deformation: numerical models of substratum flexure, spreading and extrusion. J Volcanol Geotherm Res 81:1–18

    Article  Google Scholar 

  • van Wyk de Vries B, Merle O (1998) Extension induced by volcanic loading in regional strike-slip zones. Geology 26:983–986

    Article  Google Scholar 

  • van Wyk de Vries B, Kerle N, Petley D (2000) Sector collapse forming at Casita volcano, Nicaragua. Geology 28(2):167–170

    Article  Google Scholar 

  • Von Buch L (1809) Geognosticche Beobachtungen aus eisen druch Deutschland und Italien. Berlin 1809

  • Von Buch L (1820) Ueber die Zusammenensetzung der basaltischen Inseln und über Ehrebungs-Cratere, Prussian Academy of Sceince

  • Von Buch L (1825) Physikalische Beschreibung der Canarischen Inseln. Royal Library, Berlin

    Google Scholar 

  • Von Buch L (1836) On volcanoes and craters of elevation. Edinb New Philos J 21:189–206

    Google Scholar 

  • Wilson LG (1998) Lyell: the man and his times. Geol Soc Lond Spec Publ 14:21–37

    Article  Google Scholar 

Download references

Acknowledgments

We especially thank Olivier Galland and Craig Magee for great reviews and August Gudmundsson for his editorial skill. We also thank: the Volcan de Lemptégy for generous access and assistance (www.auvergne-volcan.com/): the Parque Naturale Regionale des Volcans d’Auvergne: the Chaîne des Puys and Faille de la Limagne project (www.chainedespuys-failledelimagne.com/): the Conseil Générale du Puy de Dôme (especially for co-financing the LIDAR, with the OPGC and Auvergne Region). The Teide National Park provided authorization to carry out work in restricted areas. Teleférico del Teide kindly support our fieldwork in the volcano. This work has been funded by project CGL2010-19388 of the Spanish Science Minister (MICINN). Thanks go also to: Jake Lowenstern and Paul Mohr for information on Alid: INETER in Nicaragua with whom the Momotombo work was completed: Alexander and Marina Belousov for being enthusiastic about the Petit Puy de Dôme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. van Wyk de Vries.

Additional information

Editorial responsibility: A. Gudmundsson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Wyk de Vries, B., Márquez, A., Herrera, R. et al. Craters of elevation revisited: forced-folds, bulging and uplift of volcanoes. Bull Volcanol 76, 875 (2014). https://doi.org/10.1007/s00445-014-0875-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-014-0875-x

Keywords

Navigation