Bulletin of Volcanology

, 76:843 | Cite as

Relatively short-term correlation among deformation, degassing, and seismicity: a case study from Concepción volcano, Nicaragua

  • José Armando Saballos
  • Vladimir Conde
  • Rocco Malservisi
  • Charles B. Connor
  • Julio Álvarez
  • Angélica Muñoz
Research Article


Concepción is a frequently active composite volcano in Nicaragua, and is located on Ometepe Island, within Lake Nicaragua. Significant eruptive activity took place at this volcano between March and May 2010, consisting of ash and gas explosions (VEI 1–2). We compare geodetic baseline changes observed with global positioning system (GPS), sulfur dioxide flux (SO2), and seismic amplitude (SAM) data collected at Concepción during April – June, 2010, and February – April, 2011. Time series analysis reveals a remarkable correlation among the data sets during 2010, when the volcano was erupting. In contrast, the volcano was at its background level of activity in 2011 and the statistical correlation among the time series is not significant for this period. We explain the emergence of correlation among the time series during eruptive activity through modeling of the GPS data with emplacement of a magma column in an open conduit. In the model, magma rose in the conduit, between May 5 and 14, 2010, from a shallow reservoir located at ∼ 1.8 km depth. Later, between May 24 and 31, 2010, the top of the magma column descended to almost 600 m depth, corresponding to the cessation of eruptive activity. Thus, cross-correlation and an integrated analysis of these geophysical time series on a timescale of days helps to reveal the dynamics of the magma plumbing system operating below Concepción volcano.


Volcano deformation GPS SO2 Flux Seismic amplitude measurement Time series Open conduit Concepción volcano 



Research of J. A. Saballos was provided by the Geology Department and the Institute for the Study of the Latin America and the Caribbean of the University of South Florida. Research of V. Conde has been provided by the Swedish International Development Cooperation Agency (SIDA). We also want to acknowledge the Instituto Nicaragüense de Estudios Territoriales for providing the SAM data and logistic support. UNAVCO provided GPS equipment for several campaigns. The authors thank Sarah Kruse, Diana Roman, Tim Dixon, Paul Wetmore, and Peter La Femina, who all provided valuable guidance during the project. We are grateful for thorough reviews by two anonymous reviewers, which greatly improved the manuscript.

Supplementary material

445_2014_843_MOESM1_ESM.tex (5 kb)
(TEX 5.31 KB)


  1. Altamimi Z, Collilieux X, Métivier L (2011) ITRF2008: an improved solution of the international terrestrial reference frame. J Geodesy 85:457–473. doi: 10.1007/s00190-011-0444-4 CrossRefGoogle Scholar
  2. Bonaccorso A, Davis P (1999) Models of ground deformation from vertical volcanic conduits with application to eruptions of Mount St. J Geophys Res 104(B5):10–531Google Scholar
  3. Borgia A, Wyk van, de Vries B (2003) The volcano-tectonic evolution of Concepción, Nicaragua. Bull Volcanol 65:248–266Google Scholar
  4. Casadevall TJ, Johnston DA, Harris DM, Rose WI, Malinconico LL, Stoiber RE, Bornhorst TJ, Williams SN, Woodruff L, Thompson J (1981) SO2 emission rates at Mt. St. Helens from March 29 through December, 1980. In: Lipman P W, Mullineaux D R (eds) The 1980 eruption of Mt. St. Helens, Washington, US Geological Survey Profesional Paper 1250. USA, pp 193–207Google Scholar
  5. Chadwick WW, Archuleta RJ, Swanson DA (1988) The mechanics of ground deformation precursory to dome-building extrusions at Mount St. Helens 1981–1982. J Geophys Res 93(B5):4351–4366CrossRefGoogle Scholar
  6. Chatfield C (1996) The analysis of time–series: an introduction, 5th edn. Chapmann & Hall/CRC, FloridaGoogle Scholar
  7. Dalton MP, Waite GP, Watson IM, Nadeau PA (2010) Multiparameter quantification of gas release during weak Strombolian eruptions at Pacaya Volcano, Guatemala. Geophys Res Lett 37 (L09303). doi: 10.1029/2010GL042,617
  8. Endo ET, Murray T (1991) Real–time seismic amplitude measurement (RSAM): a volcano monitoring and prediction tool. Bull Volcanol 53:533–545CrossRefGoogle Scholar
  9. Fischer TP, Roggensack K, Kyle PR (2002) Open and almost shut case for explosive eruptions; vent processes determined by SO2 emission rates at Karymsky Volcano, Kamchatka. Geology 30:1059–1062CrossRefGoogle Scholar
  10. Galle B, Oppenheimer C, Geyer A, McGonigle AJ, Edmonds M, Horrocks L (2003) A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance. J Volcanol Geotherm Res 119(14):241–254. doi: 10.1016/S0377-0273(02)00356-6 CrossRefGoogle Scholar
  11. Galle B, Johansson M, Rivera C, Zhang Y, Kihlman M, Kern C, Lehmann T, Platt U, Arellano S, Hidalgo S (2010) Network for observation of volcanic and atmospheric change (NOVAC)–a global network for volcanic gas monitoring: Network layout and instrument description. J Geophys Res 115(D05304). doi: 10.1029/2009JD011,823
  12. Gottsmann J, Carniel R, Coppo N, Wooller L, Hautmann S, Rymer H (2007) Oscillations in hydrothermal systems as a source of periodic unrest at caldera volcanoes: Multiparameter insights from Nisyros, Greece. Geophys Res Lett 34(L07307). doi: 10.1029/2007GL029,594
  13. Hill BE, Connor CB, Jarzemba MS, LaFemina PC, Navarro M, Strauch W (1998) 1995 eruptions of Cerro Negro volcano, Nicaragua, and risk assessment for future eruptions. Geol Soc Am Bull 110:1231–1241CrossRefGoogle Scholar
  14. Hosking JR (1980) The multivariate portmanteau statistic. J Am Stat Assoc 75(371):602–608CrossRefGoogle Scholar
  15. Ichihara M, Takeo M, Yokoo A, Oikawa J, Ohminato T (2012) Monitoring volcanic activity using correlation patterns between infrasound and ground motion. Geophys Res Lett 39(4). doi: 10.1029/2011GL050,542
  16. INETER (2008) Boletín mensual: Sismos y Volcanes de Nicaragua, Octubre, 2008. Managua. http://webserver2.ineter.gob.ni/geofisica/boletin/2008/10/index0810.htm
  17. INETER (2010a) Boletín mensual: Sismos y Volcanes de Nicaragua, Abril, 2010. Managua. http://webserver2.ineter.gob.ni/geofisica/boletin/2010/04/index1004.htm
  18. INETER (2010b) Boletín mensual: Sismos y Volcanes de Nicaragua, March, 2010. Managua. http://webserver2.ineter.gob.ni/geofisica/boletin/2010/03/index1003.htm
  19. INIFOM (2001) Caracterizaciones Municipales de Nicaragua. Technical report. Instituto Nicaragënse de Fomento Municipal, available at http://www.inifom.gob.ni/municipios/municipios.html
  20. Kazahaya R, Mori T, Takeo M, Ohminato T, Urabe T, Maeda Y (2011) Relation between single very-long-period pulses and volcanic gas emissions at Mt. Asama, Japan. Geophys Res Lett 38(L11307). doi: 10.1029/2011GL047,555
  21. Kutterolf S, Freundt A, Peréz W, amd U Schacht TM, Wehrmann H, Schmincke HU (2008) Pacific offshore record of plinian arc volcanism in Central America: 1. along-arc correlations. Geochem Geophys Geosyst 9:Q02S01. doi: 10.1029/2007GC001,631 Google Scholar
  22. Landau L D, Lifshitz E M (1986) Theory of elasticity: Course of theoretical physics, 3rd edn, vol 7. Pergamon Press, OxfordGoogle Scholar
  23. Lisowski M (2007) Analytical volcano deformation source models. In: Dzurisin D (ed) Volcano deformation: geodetic monitoring techniques. Praxis Publishing Ltd, Chichester, pp 279– 304CrossRefGoogle Scholar
  24. Ljung GM, Box GE (1978) On a measure of lack of fit in time series models. Biometrika 65(2):297–303CrossRefGoogle Scholar
  25. McBirney A, Williams H (1965) Volcanic history of Nicaragua. University of California Publications in Geological Sciences 55:1–65Google Scholar
  26. McGee KA, Sutton AJ (1994) Eruptive activity at Mount St Helens, Washington, USA, 1984-1988: a gas geochemestry perspective. Bullet Volcanol 56:435–446CrossRefGoogle Scholar
  27. Nadeau PA, Palma JL, Waite GP (2011) Linking volcanic tremor, degassing, and eruption dynamics via so2 imaging. Geophys Res Lett 38(L01304). doi: 10.1029/2010GL045,820
  28. Nishimura T (2009) Ground deformation caused by magma ascent in an open conduit. J Volcanol Geotherm Res 187(3):178–192CrossRefGoogle Scholar
  29. Olmos R, Barrancos J, Rivera C, Barahona F, López D, Henriquez B, Hernández A, Benitez E, Hernández P, Pérez N, Galle B (2007) Anomalous emissions of SO2 during the recent eruption of Santa Ana Volcano, El Salvador, Central America. Pure Appl Geophys 164:2489–2506. doi: 10.1007/s00024-007-0276-6 CrossRefGoogle Scholar
  30. Platt U, Stutz J (2008) Differential optical absorption spectroscopy: Principles and applications, 1st edn. Springer-Verlag Berlin, Heidelberg, GermanyGoogle Scholar
  31. Saballos JA (2013) Short and long term volcano instability studies at concepción volcano, Nicaragua. Ph.d. dissertation, University of South Florida, TampaGoogle Scholar
  32. Saballos JA, Malservisi R, Connor C, Femina PL, Wetmore P (2013) Gravity and geodesy at Concepción volcano, Nicaragua. In: Rose W, Palma J L, Granados H D, Varley N (eds) Understanding open–vent volcanism and related hazards. Geological Society of America Special Paper 498Google Scholar
  33. Siebert L, Simkin T, Kimberly P (2011) Volcanoes of the World, 3rd edn. University of California Press, BerkeleyGoogle Scholar
  34. Symonds R, Gerlach T, Reed M (2001) Magmatic gas scrubbing: implications for volcano monitoring. J Volcanol Geotherm Res 108(1–4):303–341CrossRefGoogle Scholar
  35. Voight B, Sparks RSJ, Miller AD, Stewart RC, Hoblitt RP, Clarke A, Ewart J, Aspinall WP, Baptie B, Calder ES, Cole P, Druitt TH, Hartford C, Herd RA, Jackson P, Lejeune AM, Lockhart AB, Loughlin SC, Luckett R, Lynch L, Norton GE, Robertson R, Watson IM, Watts R, Young SR (1999) Magma flow instability and cyclic activity at Soufrière Hills Volcano, Montserrat, British West Indies. Science 283 (5405):1138–1142. doi: 10.1126/science.283.5405.1138 CrossRefGoogle Scholar
  36. van Wyk de Vries B (1993) Tectonics and magma evolution of Nicaraguan volcanic systems. Ph.d. dissertation, Open University, Milton KeynesGoogle Scholar
  37. Watson I, Oppenheimer C, Voight B, Francis P, Clarke A, Stix J, Miller A, Pyle D, Burton M, Young S, Norton G, Loughlin S, Darroux B (2000) The relationship between degassing and ground deformation at Soufrière Hills Volcano, Montserrat. J Volcanol Geotherm Res 98(1–4):117–126. doi: 10.1016/S0377-0273(99)00187-0 CrossRefGoogle Scholar
  38. Williams CA, Wadge G (1998) The effects of topography on magma chamber deformation models: Application to Mt. Etna and radar interferometry. Geophys Res Lett 25(10):1549–1552CrossRefGoogle Scholar
  39. Williams-Jones G, Stix J, Heiligmann M, Barquero J, Fernández E, González E (2001) A model of degassing and seismicity at Arenal Volcano, Costa Rica. J Volcanol Geotherm Res 108(1–4):121–139CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • José Armando Saballos
    • 1
  • Vladimir Conde
    • 2
  • Rocco Malservisi
    • 3
  • Charles B. Connor
    • 3
  • Julio Álvarez
    • 1
  • Angélica Muñoz
    • 1
  1. 1.Instituto Nicaragüense de Estudios TerritorialesManaguaNicaragua
  2. 2.Chalmers University of Technology, Earth and Space SciencesGöteborgSweden
  3. 3.School of GeosciencesUniversity of South FloridaTampaUSA

Personalised recommendations