Skip to main content

Advertisement

Log in

Volcanic CO2 flux measurement at Campi Flegrei by tunable diode laser absorption spectroscopy

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Near-infrared room temperature tunable diode lasers (TDL) have recently found increased usage in atmospheric chemistry and air monitoring research, but applications in volcanology are still limited to a few examples. Here, we explored the potential of a commercial infrared laser unit (GasFinder 2.0 from Boreal Laser Ltd) for measurement of volcanic CO2 mixing ratios, and ultimately for estimating the volcanic CO2 flux. Our field tests were conducted at Campi Flegrei near Pozzuoli, Southern Italy, where the GasFinder was used during three campaigns in October 2012, January 2013 and May 2013 to repeatedly measure the path-integrated mixing ratios of CO2 along cross sections of the atmospheric plumes of two major fumarolic fields (Solfatara and Pisciarelli). By using a tomographic post-processing routine, we resolved, for each of the two fields, the contour maps of CO2 mixing ratios in the atmosphere, from the integration of which (and after multiplication by the plumes’ transport speeds) the CO2 fluxes were finally obtained. We evaluate a total CO2 output from the Campi Flegrei fumaroles of ∼490 Mg/day, in line with independent estimates based on in situ (Multi-GAS) observations. We conclude that TDL technique may enable CO2 flux quantification at other volcanoes worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aiuppa A, Moretti R, Federico C, Giudice G, Gurrieri S, Liuzzo M, Papale P, Shinohara H, Valenza M (2007) Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology 35:1115–1118. doi:10.1130/G24149A.1

    Article  Google Scholar 

  • Aiuppa A, Bertagnini A, Métrich N, Moretti R, Di Muro A, Liuzzo M, Tamburello G (2010) A model of degassing for Stromboli Volcano. Earth Planet Sci Lett 295:195–204

    Article  Google Scholar 

  • Aiuppa A, Tamburello G, Di Napoli R, Cardellini C, Chiodini G, Giudice G, Grassa F, Pedone M (2013) First observations of the fumarolic gas output from a restless caldera: implications for the current period of unrest (2005–2013) at Campi Flegrei. Geochem Geophys Geosyst. doi:10.1002/ggge.20261

    Google Scholar 

  • Allard P, Burton M, Muré F (2005) Spectroscopic evidence for lava fountain driven by previously accumulated magmatic gas. Nature 433:407–410

    Article  Google Scholar 

  • Belotti C, Cuccoli F, Facheris L, Vaselli O (2003) An application of tomographic reconstruction of atmospheric CO2 over a volcanic site based on open-path IR laser measurements. IEEE Trans Geosci Remote Sens 41(11)

  • Bonafede M, Mazzanti M (1998) Modelling gravity variations consistent with ground deformation in the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 81:137–157

    Article  Google Scholar 

  • Burton M, Oppenheimer C, Horrocks LA, Francis PW (2000) Field measurement of CO2 and H2O emissions from Masaya Volcano, Nicaragua, by Fourier transform spectrometry. Geology 28:915–918

    Article  Google Scholar 

  • Burton MR, Mader HM, Polacci M (2007) The role of gas percolation in quiescent degassing of persistently active basaltic volcanoes. Earth Planet Sci Lett 264:46–60

    Article  Google Scholar 

  • Chiodini G, Frondini F, Cardellini C, Granieri D, Marini L, Ventura G (2001) CO2 degassing and energy release at Solfatara Volcano, Campi Flegrei, Italy. J Geophys Res 106:16213–16221

    Article  Google Scholar 

  • Chiodini G, Todesco M, Caliro S, Del Gaudio C, Macedonio G, Russo M (2003) Magma degassing as a trigger of bradyseismic events; the case of Phlegrean Fields (Italy). Geophys Res Lett 30(8):1434. doi:10.1029/2002GL01679

    Article  Google Scholar 

  • Chiodini G, Caliro S, Cardellini C, Granieri D, Avino R, Baldini A, Donnini M, Minopoli C (2010) Long-term variations of the Campi Flegrei, Italy, volcanic system as revealed by the monitoring of hydrothermal activity. J Geophys Res 115, B03205. doi:10.1029/2008JB006258

    Google Scholar 

  • Chiodini G, Caliro S, De Martino P, Avino R, Ghepardi F (2012) Early signals of new volcanic unrest at Campi Flegrei caldera? Insights from geochemical data and physical simulations. Geology 40:943–946

    Article  Google Scholar 

  • De Natale P, Gianfrani L, De Natale G, Cioni R (1998) Gas concentration measurements with DFB lasers to monitor volcanic activity. SPIE Proceedings Series. Appl Photonic Technol 3491:783–787

    Google Scholar 

  • De Natale P, Gianfrani L, De Natale G (2001) Optical methods for monitoring of volcanoes: techniques and new perspectives. J Volcanol Geotherm Res 109:235–245

    Article  Google Scholar 

  • De Rosa M, Gagliardi G, Rocco A, Somma R, De Natale P, De Natale G (2007) Continuous in situ measurements of volcanic gases with a diode-laser-based spectrometer: CO2 and H2O concentration and soil degassing at Vulcano (Aeolian islands: Italy). Geochem Trans. doi:10.1186/1467-4866-8-5

    Google Scholar 

  • Del Gaudio C, Aquino I, Ricciardi GP, Ricco C, Scandone R (2010) Unrest episodes at Campi Flegrei: a reconstruction of vertical ground movements during 1905–2009. J Volcanol Geotherm Res 195:48–56

    Article  Google Scholar 

  • Di Vito MA, Isaia R, Orsi G, Southon J, De Vita S, D’Antonio M, Pappalardo L, Piochi M (1999) Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J Volcanol Geotherm Res 91:221–246

    Article  Google Scholar 

  • Francis PW, Burton M, Oppenheimer C (1998) Remote measurements of volcanic gas compositions by solar FTIR spectroscopy. Nature 396:567–570

    Article  Google Scholar 

  • Gagliardi G, Restieri R, De Biasio G, De Natale P, Cotrufo F, Gianfrani L (2001) Quantitative diode laser absorption spectroscopy near 2 μm with high precision measurements of CO2 concentration. Rev Sci Instrum 72:4228–4233

    Article  Google Scholar 

  • Gagliardi G, Restieri R, Casa G, Gianfrani L (2002) Chemical and isotopic analysis using diode laser spectroscopy: applications to volcanic gas monitoring. Optrics Lasers Eng 37:131–142

    Article  Google Scholar 

  • Gagliardi G, Castrillo A, Iannone RQ, Kerstel ERT, Gianfrani L (2003) High-precision of the 13CO2/12CO2 isotope ratio using a portable 2.008-μm diode-laser spectrometer. Appl Phys B77:119–124. doi:10.1007/s00340-003-1240-5

    Article  Google Scholar 

  • Galle B, Oppenheimer C, Geyer A, McGonigle AJS, Edmonds M, Horrocks L (2003) A miniaturised ultraviolet spectrometer for remote sensing of SO2 fluxes: a new tool for volcano surveillance. J Volcanol Geotherm Res 119:241–254

    Article  Google Scholar 

  • Gianfrani L, Gabrysch M, Corsi C, De Natale P (1997) Detection of H2O and CO2 with distributed feedback diode lasers: measurement of broadening coefficients and assessment of the accuracy levels for volcanic monitoring. Appl Opt 36:9481–9486

    Article  Google Scholar 

  • Gianfrani L, De Natale P, De Natale G (2000) Remote sensing of volcanic gases with a DFB-laser-based fiber spectrometer. Appl Phys B-Rapid Common 70:467–470

    Article  Google Scholar 

  • Giggenbach WF (1996) In: Scarpa R, Tilling RI (eds) Chemical composition of volcanic gases in monitoring and mitigation of volcanic hazards. Springer, Berlin, pp 221–256

    Chapter  Google Scholar 

  • Humphries SD, Nehir AR, Keith CJ, Repasky KS, Dobeck LM, Carlsten JL, Spangler LH (2008) Testing carbon sequestration site monitor instruments using a controlled carbon dioxide release facility. Appl Opt 47:548–555

    Article  Google Scholar 

  • Inguaggiato S, Mazot A, Diliberto IS, Inguaggiato C, Madonia P, Dmitri R, Vita F (2012) Total CO2 output from Vulcano island (Aeolian Islands, Italy). Geochem Geophys Geosyst. doi:10.1029/2011GC003920 ISSN. 1525-2027

  • Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York, p 561

    Google Scholar 

  • Millan MM, Gallant AJ, Chung YS, Fanaki F (1985) COSPEC observation of Mt. St. Helens volcanic SO2 eruption cloud of 18 may 1980 over Southern Ontario. Atmos Environ 19:255–263

    Article  Google Scholar 

  • Oppenheimer C (2010) Ultraviolet sensing of volcanic sulfur emissions. Elements 6:87–92

    Article  Google Scholar 

  • Oppenheimer C, Lomakina A, Kyle PR, Kingsbury NG, Boichu M (2009) Pulsatory magma supply to a phonolite lava lake. Earth Planet Sci Lett 284:392–398

    Article  Google Scholar 

  • Oppenheimer C, Moretti R, Kyle PR, Eschenbacher A, Lowenstern JB, Hervig RL, Dunber NW (2011) Mantle to surface degassing of alkalic magmas at Erebus Volcano, Antarctica. Earth Planet Sci Lett 306:261–271

    Article  Google Scholar 

  • Oppenheimer C, Fischer TP, Scaillet B (2014) Volcanic degassing: process and impact. In: Holland HD, Turekian KK (eds) Treatise on geochemistry, 2nd edn. Elsevier, Oxford, pp 111–179

    Chapter  Google Scholar 

  • Orsi G, De Vita S, Di Vito M (1996) The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J Volcanol Geotherm Res 74:179–214

    Article  Google Scholar 

  • Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530

    Article  Google Scholar 

  • Orsi G, Di Vito MA, Selva J, Marzocchi W (2009) Long-term forecast of eruptive style and size at Campi Flegrei caldera (Italy). Earth Planet Sci Lett 287:265–276

    Article  Google Scholar 

  • Richter D, Erdelyi M, Curl RF, Tittel FK, Oppenheimer C, Duffell HJ, Burton M (2002) Field measurements of volcanic gases using tunable diode laser based mid-infrared and Fourier transform infrared spectrometers. Opt Lasers Eng 37:171–186

    Article  Google Scholar 

  • Rosi M, Sbrana A, Principe C (1983) The Phlegrean Fields: structural evolution, volcanic history and eruptive mechanisms. J Volcanol Geotherm Res 17:273–288

    Article  Google Scholar 

  • Schiff HI, Mackay GI, Bechara J (1994a) The use of tunable diode laser absorption spectroscopy for atmospheric measurements. Res Chem Intermed 20:525–556

    Article  Google Scholar 

  • Schiff HI, Mackay GI, Bechara J (1994b) The use of tunable diode laser absorption spectroscopy for atmospheric measurements. In: Sigrist MW (ed) Air monitoring by spectroscopic techniques. Chemical Analysis Series. Wiley, New York, pp 239–333

    Google Scholar 

  • Svanberg S (2002) Geophysical gas monitoring using optical techniques: volcanoes, geothermal fields and mines. Opt Lasers Eng 37:245–266

    Article  Google Scholar 

  • Symonds R, Rose WI, Bluth GJS, Gerlach TM (1994) Volcanic-gas studies: methods, results and applications. In: MR Carroll, JR Halloway (eds) Volatiles in magmas. Mineralogical Society of America, Washington, DC, pp 1–66

  • Trasatti E, Bonafede M, Ferrari C, Giunchi C, Berrino G (2011) On deformation sources in volcanic areas: modeling the Campi Flegrei (Italy) 1982–84 unrest. Earth Planet Sci Lett 306:175–185

    Article  Google Scholar 

  • Trottier S, Gunter WD, Kadatz B, Olson M, Perkins EH (2009) Atmospheric monitoring for the Pembina Cardium CO2 monitoring project using open path laser technology. Energy Procedia 1:2307–2314. doi:10.1016/j.egypro.2009.01.300

    Article  Google Scholar 

  • Tulip J (1997) Gas detector. United States Patent 5,637,872 250/338.5

  • Weidmann D, Wysocki G, Oppenheimer C, Tittel FK (2005) Development of a compact quantum cascade laser spectrometer for field measurement of CO2 isotopes. Appl Phys B 80:255–260

    Article  Google Scholar 

  • Werle P (1998) A review of recent advances in semiconductor laser based gas monitors. Spectrochim Acta A54:197–236

    Article  Google Scholar 

  • Werle P, Slemr F, Maurer K, Kormann R, Mücke R, Jänker B (2002) Near- and mid-infrared laser-optical sensors for gas analysis. Opt Lasers Eng 37:101–114

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from contract V2_01 (Progetto V2 “Precursori”; DPC-INGV research agreement 2012-2013), from Miur (PRIN 2009; PI M.V.), and from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007/2013)/ERC grant agreement n1305377 (PI, A.A). Clive Oppenheimer (Associate Editor), Agnes Mazot and an anonymous reviewer are acknowledged for their constructive reviews. The authors would also like to thank technical assistance from Boreal Laser Inc. Michael Sosef (at Boreal Laser), in particular, helped in many ways in setting up the instruments. Rossella Di Napoli, Cinzia Federico, Nicolò Parrino and Giancarlo Tamburello are acknowledged for their kind support of fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pedone.

Additional information

Editorial responsibility: C. Oppenheimer

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 546 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedone, M., Aiuppa, A., Giudice, G. et al. Volcanic CO2 flux measurement at Campi Flegrei by tunable diode laser absorption spectroscopy. Bull Volcanol 76, 812 (2014). https://doi.org/10.1007/s00445-014-0812-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-014-0812-z

Keywords

Navigation