Bulletin of Volcanology

, 76:795 | Cite as

The 2007–8 volcanic eruption on Jebel at Tair island (Red Sea) observed by satellite radar and optical images

  • Wenbin Xu
  • Sigurjón Jónsson
Research Article


We use high-resolution optical images and Interferometric Synthetic Aperture Radar (InSAR) data to study the September 2007–January 2008 Jebel at Tair eruption. Comparison of pre- and post-eruption optical images reveals several fresh ground fissures, a new scoria cone near the summit, and that 5.9 ± 0.1 km2 of new lava covered about half of the island. Decorrelation in the InSAR images indicates that lava flowed both to the western and to the northeastern part of the island after the start of the eruption, while later lavas were mainly deposited near the summit and onto the north flank of the volcano. From the InSAR data, we also estimate that the average thickness of the lava flows is 3.8 m, resulting in a bulk volume of around 2.2 × 107 m3. We observe no volcano-wide pre- or post-eruption uplift, which suggests that the magma source may be deep. The co-eruption interferograms, on the other hand, reveal local and rather complex deformation. We use these observations to constrain a tensile dislocation model that represents the dike intrusion that fed the eruption. The model results show that the orientation of the dike is perpendicular to the Red Sea rift, implying that the local stresses within the volcanic edifice are decoupled from the regional stress field.


Red sea InSAR High-resolution optical satellite imagery Volcanology 



We thank Jamal Sholan (Seismological & Volcanological Observatory of Yemen) for providing information about the Jebel at Tair eruption. We also thank Talfan Barnie (University of Cambridge), Eleonora Rivalta (GFZ Potsdam), Guangcai Feng (KAUST), Teng Wang (KAUST), and Chong Chen (KAUST) for useful discussions, as well as Ahmet Akoglu (KAUST) for help with the GMT software (Wessel and Smith 1998), which was used to prepare Fig. 1a. Comments made by the editor, Matthew R. Patrick, as well as by Juliet Biggs, William W. Chadwick, and one anonymous reviewer helped to improve the manuscript. The European Space Agency (ESA) and the Japanese Aerospace Exploration Agency (JAXA) provided the SAR images used in this study through ESA category-1 project #6703. The TanDEM-X images were provided by the German Aerospace Center (DLR) through project XTI_GEOL3441.

Supplementary material

445_2014_795_MOESM1_ESM.docx (2.3 mb)
ESM 1 DOCX 2,322 kb


  1. Amelung F, Yun SH, Walter TR, Segall P, Kim SW (2007) Stress control of deep rift intrusion at Mauna Loa volcano, Hawaii. Science 316:1026–1030. doi: 10.1126/science.1140035 CrossRefGoogle Scholar
  2. ArRajehi A, McClusky S, Reilinger R, Daoud M, Alchalbi A, Ergintav S, Gomez F, Sholan J, Bou-Rabee F, Ogubazghi G, Haileab B, Fisseha S, Asfaw L, Mahmoud S, Rayan A, Bendik R, Kogan L (2010) Geodetic constraints on present-day motion of the Arabian Plate: implications for Red Sea and Gulf of Aden rifting. Tectonics 29, TC3011. doi: 10.1029/2009TC002482 CrossRefGoogle Scholar
  3. Bagnardi M, Amelung F, Poland MP (2013) A new model for the growth of basaltic shields based on deformation of Fernandina volcano, Galápagos. Earth Planet Sci Lett 377–378:358–366. doi: 10.1016/j.epsl.2013.07.016 CrossRefGoogle Scholar
  4. Biggs J, Wright T, Lu Z, Parsons B (2007) Multi-interferogram method for measuring interseismic deformation: Denali Fault, Alaska. Geophys J Int 170:1165–1179. doi: 10.1111/j.1365-246X.2007.03415.x CrossRefGoogle Scholar
  5. Biggs J, Chivers M, Hutchison MC (2013) Surface deformation and stress interactions during the 2007–2010 sequence of earthquake, dyke intrusion and eruption in Northern Tanzania. Geophys J Int 195:16–26. doi: 10.1093/gji/ggt226 Google Scholar
  6. Bird P (2003) An updated digital model of plate boundaries. Geochem Geophys Geosyst 4:1027. doi: 10.1029/2001GC000252 CrossRefGoogle Scholar
  7. Cervelli P, Murray MH, Segall P, Aoki Y, Kato T (2001) Estimating source parameters from deformation data, with an application to the March 1997 earthquake swarm off the Izu Peninsula, Japan. J Geophys Res 106:11217–11237. doi: 10.1029/2000JB900399 CrossRefGoogle Scholar
  8. Chadwick WW, Jónsson S, Geist DJ, Poland M, Johnson DJ, Batt S, Harpp KS, Ruiz A (2011) The May 2005 eruption of Fernandina volcano, Galapagos: GPS and InSAR observations of a circumferential dike intrusion. Bull Volcanol 73:679–697CrossRefGoogle Scholar
  9. Chen CW, Zebker HA (2001) Two-dimensional phase unwrapping with use of statistical models for cost functions in nonlinear optimization. J Opt Soc Am A Opt Image Sci Vis 18:338–351CrossRefGoogle Scholar
  10. Clarisse L, Coheur PF, Prata AJ, Hurtmans D, Razavi A, Phulpin T, Hadji-Lazaro J, Clerbaux C (2008) Tracking and quantifying volcanic SO2 with IASI, the September 2007 eruption at Jebel at Tair. Atmos Chem Phys 8:7723–7734. doi: 10.5194/acp-8-7723-2008 CrossRefGoogle Scholar
  11. Dietterich HR, Poland MP, Schmidt DA, Cashman KV, Sherrod DR, Espinosa AT (2012) Tracking lava flow emplacement on the east rift zone of Kīlauea, Hawai’i, with synthetic aperture radar coherence. Geochem Geophys Geosyst 13, Q05001. doi: 10.1029/2011GC004016 CrossRefGoogle Scholar
  12. Ebmeier SK, Biggs J, Mather TA, Wadge G, Amelung F (2010) Steady downslope movement on the western flank of Arenal volcano, Costa Rica. Geochem Geophys Geosyst 11:12. doi: 10.1029/2010GC003263 CrossRefGoogle Scholar
  13. Ebmeier SK, Biggs J, Mather TA, Elliott JR, Wadge G, Amelung F (2012) Measuring large topographic change with InSAR: lava thicknesses, extrusion rate and subsidence rate at Santiaguito volcano, Guatemala. Earth Planet Sci Lett 335–336:216–225. doi: 10.1016/j.epsl.2012.04.027 CrossRefGoogle Scholar
  14. Eckhardt S, Prata A, Seibert P, Stebel K, Stohl A (2008) Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling. Atmos Chem Phys 8:3761–3805. doi: 10.5194/acp-8-3881-2008 CrossRefGoogle Scholar
  15. Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D (2007) The Shuttle Radar Topography Mission. Rev Geophys 45, RG2004. doi: 10.1029/2005RG000183 CrossRefGoogle Scholar
  16. Gass IANG, Mallick DIJ, Cox KG (1973) Volcanic islands of the Red Sea. J Geol Soc 129:275–309. doi: 10.1144/gsjgs.129.3.0275 CrossRefGoogle Scholar
  17. Goldstein RM, Werner CL (1998) Radar interferogram filtering for geophysical applications. Geophys Res Lett 25:4035–4038. doi: 10.1029/1998GL900033 CrossRefGoogle Scholar
  18. International Seismological Centre (2010) Online bulletin., Internatl. Seis. Cent., Thatcham, UK
  19. Jónsson S (2009) Stress interaction between magma accumulation and trapdoor faulting on Sierra Negra volcano, Galápagos. Tectonophysics 471:36–44. doi: 10.1016/j.tecto.2008.08.005 CrossRefGoogle Scholar
  20. Krieger G, Moreira A, Fiedler H, Hajnsek I, Werner M, Younis M, Zink M (2007) TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Trans Remote Sens Geosci 45:3317–3341. doi: 10.1109/TGRS.2007.900693 CrossRefGoogle Scholar
  21. Lu Z, Fielding E, Patrick MR, Trautwein CM (2003) Estimating lava volume by precision combination of multiple baseline spaceborne and airborne interferometric synthetic aperture radar: the 1997 eruption of Okmok volcano, Alaska. IEEE Trans Remote Sens Geosci 41:1428–1436. doi: 10.1109/TGRS.2003.811553 CrossRefGoogle Scholar
  22. Lu Z, Masterlark T, Dzurisin D (2005) Interferometric synthetic aperture radar study of Okmok volcano, Alaska, 1992–2003: magma supply dynamics and postemplacement lava flow deformation. J Geophys Res: Solid Earth 110:B2. doi: 10.1029/2004JB003148 Google Scholar
  23. Lu Z, Dzurisin D, Biggs J, Wicks C, McNutt S (2010) Ground surface deformation patterns, magma supply, and magma storage at Okmok volcano, Alaska, from InSAR analysis: 1. Intereruption deformation, 1997–2008. J Geophys Res 115:B00B02. doi: 10.1029/2009JB006969 Google Scholar
  24. Lundgren P, Lu Z (2006) Inflation model of Uzon caldera, Kamchatka, constrained by satellite radar interferometry observations. Geophys Res Lett 33, L06301. doi: 10.1029/2005GL025181 CrossRefGoogle Scholar
  25. Massonnet D, Feigl KL (1998) Radar interferometry and its application to changes in the Earth’s surface. Rev Geophys 36:441–500. doi: 10.1029/97RG03139 CrossRefGoogle Scholar
  26. McClusky S, Reilinger R, Ogubazghi G, Amleson A, Healeb B, Vernant P, Sholan J, Fisseha S, Asfaw L, Bendick R, Kogan L (2010) Kinematics of the southern Red Sea-Afar Triple Junction and implications for plate dynamics. Geophys Res Lett 37, L05301. doi: 10.1029/2009GL041127 CrossRefGoogle Scholar
  27. Mogi K (1958) Relations of the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull Earthq Res Inst Tokyo Univ 36:99–134Google Scholar
  28. Ofeigsson BG, Hooper A, Sigmundsson F, Sturkell E, Grapenthin R (2011) Deep magma storage at Hekla volcano, Iceland, revealed by InSAR time series analysis. J Geophys Res 116, B05401. doi: 10.1029/2010JB007576 Google Scholar
  29. Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154Google Scholar
  30. Poland MP (2007) ASAR images a diverse set of deformation patterns at Kilauea volcano, Hawai’i. Proceedings of the ENVISAT Symposium Monteux, Switzerland, 23–27 April 2007, ESA SP-636, 6 ppGoogle Scholar
  31. Pritchard ME, Simons M, Rosen PA, Hensley S, Webb FH (2002) Co-seismic slip from the 1995 July 30 M w = 8.1 Antofagasta, Chile, earthquake as constrained by InSAR and GPS observations. Geophys J Int 150:362–376. doi: 10.1046/j.1365-246X.2002.01661.x CrossRefGoogle Scholar
  32. Rowland SK, Harris AJL, Wooster MJ, Amelung F, Garbeil H, Wilson L, Mouginis-Mark PJ (2003) Volumetric characteristics of lava flows from interferometric radar and multispectral satellite data: the 1995 Fernandina and 1998 Cerro Azul eruptions in the western Galapagos. Bull Volcanol 65:311–330. doi: 10.1007/s00445-002-0262-x CrossRefGoogle Scholar
  33. Shibata T, Kouketsu T (2008) Volcanic clouds from the 2007 eruption of Jebel at Tair (Yemen) detected by ground based and space borne Lidar. SOLA 4:93–96. doi: 10.2151/sola.2008-024 CrossRefGoogle Scholar
  34. Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the world, 3rd edn. Univ of California Press, BerkeleyGoogle Scholar
  35. Singh SC, Crawford WC, Carton H, Seher T, Combier V, Cannat M, Pablo Canales J, Dusunur D, Escartin J, Miguel Miranda J (2006) Discovery of a magma chamber and faults beneath a Mid-Atlantic Ridge hydrothermal field. Nature 442:1029–1032. doi: 10.1038/nature05105 CrossRefGoogle Scholar
  36. Smithsonian Institution (2007) Jebel at Tair. Bulletin of the Global Volcanism Network 32(10)Google Scholar
  37. Smithsonian Institution (2008) Jebel at Tair. Bulletin of the Global Volcanism Network 33(4)Google Scholar
  38. Stevens NF, Wadge G, Williams CA, Morley JG, Muller JP, Murray JB, Upton M (2001) Surface movements of emplaced lava flows measured by synthetic aperture radar interferometry. J Geophys Res 106(B6):11293–11313. doi: 10.1029/2000JB900425 CrossRefGoogle Scholar
  39. Wadge G, Oramas Dorta D, Cole PD (2006) The magma budget of Volcan Arenal, Costa Rica from 1980 to 2004. J Volcanol Geotherm Res 157:60–74. doi: 10.1016/j.jvolgeores.2006.03.037 CrossRefGoogle Scholar
  40. Werner C, Wegmüller U, Strozzi T, Wiesmann A (2000) Gamma SAR and interferometric processing software. In: Proceedings of the ERS-ENVISAT Symposium, Gothenburg, Sweden, pp. 16–20Google Scholar
  41. Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. Eos Trans AGU 79:579. doi: 10.1029/98EO00426 CrossRefGoogle Scholar
  42. Xu W, Li Z, Ding X, Wang C, Feng G (2012) Application of small baseline subsets D-InSAR technology to estimate the time series land deformation and aquifer storage coefficients of Los Angeles area. Chin J Geophys 55:452–461. doi: 10.6038/j.issn.0001-5733.2012.02.009 (in Chinese)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia

Personalised recommendations