Bulletin of Volcanology

, 75:782 | Cite as

Tectonic and magmatic controls on the location of post-subduction monogenetic volcanoes in Baja California, Mexico, revealed through spatial analysis of eruptive vents

  • Aurélie Germa
  • Laura J. Connor
  • Edgardo Cañon-Tapia
  • Nicolas Le Corvec
Research Article

Abstract

Post-subduction (12.5 Ma to less than 1 Ma) monogenetic volcanism on the Baja California peninsula, Mexico, formed one of the densest intra-continental areas of eruptive vents on Earth. It includes about 900 vents within an area ∼700 km long (N–S) and 70 to 150 km wide (W–E). This study shows that post-subduction volcanic activity was distributed along this arc and that modes exist in the volcano distribution, indicating that productivity of the magma source region was not uniform along the length of the arc. Vent clustering, vent alignments, and cone elongations were measured within eight monogenetic volcanic fields located along the peninsula. Results indicate that on a regional scale, vent clustering varies from north to south with denser spatial clustering in the north on the order of 1.9 × 10−1 vents/km2 to less dense clustering in the south on the order of 7.8 × 10−2 vents/km2. San Quintin, San Carlos, Jaraguay, and Santa Clara are spatially distinct volcanic fields with higher eruptive vent densities suggesting the existence of individual melt columns that may have persisted over time. In contrast, the San Borja, Vizcaino, San Ignacio, and La Purisima vent fields show lower degrees of vent clustering and no obvious spatial gaps between fields, thus indicating an area of more distributed volcanism. Insight into the lithospheric stress field can be gained from vent alignments and vent elongation measurements. Within the fields located along the extinct, subduction-related volcanic arc, elongation patterns of cinder cones and fissure-fed spatter cones, vent clusters, and vent alignments trend NW–SE and N–S. Within the Santa Clara field, located more to the west within the forearc, elongation patterns of the same volcanic features trend NE–SW. These patterns suggest that magmatism was more focused in the forearc and in the northern part of Baja California than in its southern region. Within the extinct arc, magma ascent created volcano alignments and elongate cones parallel to NW–SE to N–S oriented tectonic structures. In the forearc, the existence of N–S and NE–SW oriented volcanic features indicates a rotation in the stress field orientation compared to the arc.

Keywords

Baja California Monogenetic volcanism Vent distribution Spatial intensity Vent alignments 

References

  1. Aguillón-Robles A, Calmus T, Benoit M, Bellon H, Maury RC, Cotten J, Bourgeois J, Michaud F (2001) Late Miocene adakites and Nb-enriched basalts from Vizcaino Peninsula, Mexico: Indicators of East Pacific Rise subduction below southern Baja California? Geology 29(6):531–534CrossRefGoogle Scholar
  2. Atwater T, Stock J (1998) Pacific North-America plate tectonics of the Neogene Southwestern United States; an update. Int Geol Rev 40:375–402CrossRefGoogle Scholar
  3. Bacon C (1985) Implication of silicic vent patterns for the presence of large crustal magma chambers. J Geophys Res 90:11,243–11,252CrossRefGoogle Scholar
  4. Bebbington MS (2013) Assessing spatio-temporal eruption forecasts in a monogenetic volcanic field. J Volcanol Geotherm Res 252:14–28CrossRefGoogle Scholar
  5. Bebbington MS, Cronin SJ (2011) Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. Bull Volcanol 73(1):55–72CrossRefGoogle Scholar
  6. Bellon H, Aguillón-Robles A, Calmus T, Maury RC, Bourgeois J, Cotten J (2006) La Purísima volcanic field, Baja California Sur (Mexico): Miocene to Quaternary volcanism related to subduction and opening of an asthenospheric window. J Volcanol Geotherm Res 152(3–4):253–272CrossRefGoogle Scholar
  7. Bernhard Spörli K, Eastwood VR (1997) Elliptical boundary of an intraplate volcanic field, Auckland, New Zealand. J Volcanol Geotherm Res 79(3–4):169–179CrossRefGoogle Scholar
  8. Bonali F, Corazzato C, Tibaldi A (2011) Identifying rift zones on volcanoes: an example from La Réunion Island, Indian Ocean. Bull Volcanol 73(3):347–366CrossRefGoogle Scholar
  9. Bonini JA, Baldwin SL (1998) Mesozoic metamorphic and middle to late Tertiary magmatic events on Magdalena and Santa Margarita Islands, Baja California Sur, Mexico: implications for the tectonic evolution of the Baja California continental borderland. Geol Soc Am Bull 110:1094–1104CrossRefGoogle Scholar
  10. Brenna M, Cronin SJ, Smith IEM, Sohn YK, Maas R (2012) Spatio-temporal evolution of a dispersed magmatic system and its implications for volcano growth, Jeju Island Volcanic Field, Korea. Lithos 148:337–352CrossRefGoogle Scholar
  11. Calmus T, Aguillón-Robles A, Maury RC, Bellon H, Benoit M, Cotten J, Bourgeois J, Michaud F (2003) Spatial and temporal evolution of basalts and magnesian andesites (“bajaites”) from Baja California, Mexico: the role of slab melts. Lithos 66(1–2):77–105CrossRefGoogle Scholar
  12. Calmus T, Pallares C, Maury R, Aguillón-Robles A, Bellon H, Benoit M, Michaud F (2011) Volcanic markers of the post-subduction evolution of Baja California and Sonora, Mexico: Slab tearing versus lithospheric rupture of the Gulf of California. Pure Appl Geophys 168(8):1303–1330CrossRefGoogle Scholar
  13. Cañón-Tapia E (2004) Flow direction and magnetic mineralogy of lava flows from the central parts of the Peninsula of Baja California, Mexico. Bull Volcanol 66:431–442Google Scholar
  14. Cañón-Tapia E (2013) Volcano clustering determination: Bivariate Gauss vs. Fisher kernels. J Volcanol Geotherm Res 258:203–214CrossRefGoogle Scholar
  15. Cappello A, Neri M, Acocella V, Gallo G, Vicari A, Del Negro C (2012) Spatial vent opening probability map of Etna volcano (Sicily, Italy). Bull Volcanol 74(9):2083–2094CrossRefGoogle Scholar
  16. Castillo PR (2008) Origin of the adakite-high-Nb basalt association and its implications for post subduction magmatism in Baja California, Mexico. Geol Soc Am Bull 120(3–4):451–462CrossRefGoogle Scholar
  17. Cebriá JM, Martín-Escorza C, López-Ruiz J, Morán-Zenteno DJ, Martiny BM (2011) Numerical recognition of alignments in monogenetic volcanic areas: examples from the Michoacán-Guanajuato Volcanic Field in Mexico and Calatrava in Spain. J Volcanol Geotherm Res 201:73–82CrossRefGoogle Scholar
  18. Chacón JE, Duong T (2010) Multivariate plug-in bandwidth selection with unconstrained pilot matrices. Test 19:375–398CrossRefGoogle Scholar
  19. Chacón JE, Duong T (2011) Unconstrained pilot selectors for smoothed cross validation. Aust New Zealand J Statist 53:331–351CrossRefGoogle Scholar
  20. Chacón JE, Duong T (2013) Data-driven density estimation, with applications to nonparametric clustering and bump hunting. Electron J Stat 7:499–532CrossRefGoogle Scholar
  21. Chacón JE, Duong T, Wand MP (2011) Asymptotics for general multivariate kernel density derivative estimators. Stat Sin 21:807–840CrossRefGoogle Scholar
  22. Connor CB (1987) Structure of the Michoacán-Guanajuato volcanic field, Mexico. J Volcanol Geotherm Res 33(1–3):191–200CrossRefGoogle Scholar
  23. Connor CB (1990) Cinder cone clustering in the TransMexican Volcanic Belt: implications for structural and petrologic models. J Geophys Res 95(B12):19395–19405CrossRefGoogle Scholar
  24. Connor CB, Connor LJ (2009) Estimating spatial density with kernel methods. In: Connor CB, Chapman NA, Connor LJ (eds) Volcanic and tectonic hazard assessment for nuclear facilities. Cambridge University Press, Cambridge, pp 387–412Google Scholar
  25. Connor CB, Conway FM (2000) Basaltic volcanic fields. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic Press, San Diego, pp 331–343Google Scholar
  26. Connor CB, Condit CD, Crumpler LS, Aubele JC (1992) Evidence of regional structural controls on vent distribution: Springerville volcanic field, Arizona. J Geophys Res 97(B9):12349–12359CrossRefGoogle Scholar
  27. Connor L, Connor C, Meliksetian K, Savov I (2012) Probabilistic approach to modeling lava flow inundation: a lava flow hazard assessment for a nuclear facility in Armenia. J Appl Volcanol 1(1):3CrossRefGoogle Scholar
  28. Corazzato C, Tibaldi A (2006) Fracture control on type, morphology and distribution of parasitic volcanic cones: an example from Mt. Etna, Italy. J Volcanol Geotherm Res 158:177–194CrossRefGoogle Scholar
  29. Diez M, Connor CB, Kruse SE, Connor LJ, Savov IP (2009) Evidence of small-volume igneous diapirism in the shallow crust of the Colorado Plateau, San Rafael Desert, Utah. Lithosphere 1(6):328–336CrossRefGoogle Scholar
  30. Dixon T, Farina F, DeMets C, Suarez-Vidal F, Fletcher J, Marquez-Azua B, Miller M, Sanchez O, Umhoefer P (2000) New kinematic models for Pacific-North America motion from 3 ma to present, II: evidence for a “Baja California shear zone”. Geophys Res Lett 27(23):3961–3964CrossRefGoogle Scholar
  31. Duong T (2007) ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. J Stat Softw 21(7):1–16Google Scholar
  32. Duong T, Hazelton ML (2003) Plug-in bandwidth matrices for bivariate kernel density estimation. J Nonparametric Stat 15:17–30CrossRefGoogle Scholar
  33. Duong T, Hazelton ML (2005a) Convergence rates for unconstrained bandwidth matrix selectors in multivariate kernel density estimation. J Multivar Anal 93:417–433CrossRefGoogle Scholar
  34. Duong T, Hazelton ML (2005b) Cross-validation bandwidth matrices for multivariate kernel density estimation. Scand J Stat 32:485–506CrossRefGoogle Scholar
  35. Gaffney ES, Damjanac B (2006) Localization of volcanic activity: topographic effects on dike propagation, eruption and conduit formation. Geophys Res Lett 33(14), L14313Google Scholar
  36. Gastil G, Krummenacher D, Minch J (1979) The record of Cenozoic volcanism around the Gulf of California. Geol Soc Am Bull 90:839–857CrossRefGoogle Scholar
  37. Goguitchaichvili A, Morales J, Cañón-Tapia E, Negrete-Aranda R (2003) Geomagnetic field strength during late Miocene: first paleointensity results from Baja California. J Geophys Res 108(B2). doi: 10.1029/2002JB002081
  38. Handy MR, Hirth G, Hovius N (2007) Tectonic faults: agents of change on a dynamic Earth. The Dynamics of Fault Zones: 1–8Google Scholar
  39. Hasenaka T, Carmichael ISE (1985) The cinder cones of Michoacán-Guanajuato, central Mexico: their age, volume and distribution, and magma discharge rate. J Volcanol Geotherm Res 25(1–2):105–124CrossRefGoogle Scholar
  40. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe version 4, available from the CGIAR-CSI, SRTM 90 m Database. http://srtm.csi.cgiar.org Accessed Jan 2013
  41. Kiyosugi K, Connor C, Zhao D, Connor L, Tanaka K (2010) Relationships between volcano distribution, crustal structure, and P-wave tomography: an example from the Abu Monogenetic Volcano Group, SW Japan. Bull Volcanol 72(3):331–340CrossRefGoogle Scholar
  42. Kiyosugi K, Connor CB, Wetmore PH, Ferwerda BP, Germa A, Connor LJ, Hintz AR (2012) Relationship between dike and volcanic conduit distribution in a highly-eroded monogenetic volcanic: San Rafael, UT, USA. Geology 40:695–698CrossRefGoogle Scholar
  43. Le Corvec N, Bernhard Spörli K, Rowland J, Lindsay JM (2013a) Spatial distribution and alignments of volcanic centers: clues to the formation of monogenetic volcanic fields. Earth-Sci Rev 124:96–114CrossRefGoogle Scholar
  44. Le Corvec N, Menand T, Lindsay JM (2013b) Interaction of ascending magma with pre-existing crustal fractures in monogenetic basaltic volcanism: an experimental approach. J Geophys Res 118(3):968–984CrossRefGoogle Scholar
  45. Luhr JF, Arandagomez JJ, Housh TB (1995) San Quintin Volcanic field, Baja California norte, Mexico—geology, petrology and geochemistry. J Geophys Res 100(B6):10353–10380CrossRefGoogle Scholar
  46. Lutz TM (1986) Analysis of the orientations of large-scale crustal structures: a statistical approach based on areal distributions of point like features. J Geophys Res 91:421–434CrossRefGoogle Scholar
  47. Lutz TM, Gutmann JT (1995) An improved method for determining and characterizing alignments of pointlike features and its implications for the Pinacate volcanic field, Sonora, Mexico. J Geophys Res 100(B9):17659–17670CrossRefGoogle Scholar
  48. Mammerickx J, Klitgord KD (1982) Northern East Pacific Rise: Evolution from 25 m.y. B.P. to the Present. J Geophys Res 87(B8):6751–6759CrossRefGoogle Scholar
  49. Martin A, Fletcher JM, Lopez-Martinez M, Mendoza-Borunda R (2000) Waning Miocene subduction and arc volcanism in Baja California: the San Luis Gonzaga volcanic field. Tectonophysics 318(1–4):27–51CrossRefGoogle Scholar
  50. Maury RC, Calmus T, Pallares C, Benoit M, Grégoire M, Aguillon-Robles A, Bellon H, Bohn M (2009) Origin of the adakite-high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico: Discussion. Geol Soc Am Bul 121(9–10):1465–1469CrossRefGoogle Scholar
  51. Mazzarini F, D’Orazio M (2003) Spatial distribution of cones and satellite-detected lineaments in the PaliAike Volcanic Field (southernmost Patagonia): insights into the tectonic setting of a Neogene rift system. J Volcanol Geotherm Res 125(3–4):291–305CrossRefGoogle Scholar
  52. Michaud F, Royer JY, Bourgeois J, Dyment J, Calmus T, Bandy W, Sosson M, Mortera-Gutiérrez SB, Rebolledo-Viera M, Pontoise B (2006) Oceanic-ridge subduction vs. slab break off: plate tectonic evolution along the Baja California Sur continental margin since 15 Ma. Geology 34:13–16CrossRefGoogle Scholar
  53. Morales J, Goguitchaichvili A, Cañón-Tapia E, Negrete-Aranda R (2003) Paléointensités géomagnétiques absolues complémentaires de la Basse Californie : évaluation des données du Pliocène et du Pléistocène inférieur et moyen. C R Geosci 335:995–1004CrossRefGoogle Scholar
  54. Nakamura K (1977) Volcanoes as possible indicators of tectonic stress orientation—principle and proposal. J Volcanol Geotherm Res 2:1–16CrossRefGoogle Scholar
  55. Negrete-Aranda R, Cañón-Tapia E (2008) Post-subduction volcanism in the Baja California Peninsula, Mexico: the effects of tectonic reconfiguration in volcanic systems. Lithos 102(1–2):392–414CrossRefGoogle Scholar
  56. Negrete-Aranda R, Cañón-Tapia E, Brandle JL, Ortega-Rivera MA, Lee JKW, Spelz RM, Hinojosa-Corona A (2010) Regional orientation of tectonic stress and the stress expressed by post-subduction high-magnesium volcanism in northern Baja California, Mexico: Tectonics and volcanism of San Borja volcanic field. J Volcanol Geotherm Res 192(1–2):97–115CrossRefGoogle Scholar
  57. Németh K (2010) Monogenetic volcanic fields: origin, sedimentary record, and relationship with polygenetic volcanism. In: Cañón-Tapia E, Szakacs A (eds) What is a volcano? Geol Soc Am S 470:43–66Google Scholar
  58. Pallares C, Maury RC, Bellon H, Royer J-Y, Calmus T, Aguillón-Robles A, Cotten J, Benoit M, Michaud F, Bourgeois J (2007) Slab-tearing following ridge-trench collision: evidence from Miocene volcanism in Baja California, México. J Volcanol Geotherm Res 161(1–2):95–117CrossRefGoogle Scholar
  59. Pallares C, Bellon H, Benoit M, Maury RC, Aguillón-Robles A, Calmus T, Cotten J (2008) Temporal geochemical evolution of Neogene volcanism in northern Baja California (27°–30° N): insights on the origin of post-subduction magnesian andesites. Lithos 105(1–2):162–180CrossRefGoogle Scholar
  60. Paulsen TS, Wilson TJ (2010) New criteria for systematic mapping and reliability assessment of monogenetic volcanic vent alignments and elongate volcanic vents for crustal stress analyses. Tectonophysics 482(1–4):16–28CrossRefGoogle Scholar
  61. Richardson JA, Miller DM, Bleacher JE, Connor CB, Gregg TK, Connor LJ, Glaze LS (2012) Comparison of monogenetic volcano clusters on Earth, Venus and Mars. Abstract V44C-04. AGU Fall Meeting 2012.Google Scholar
  62. Rojas Beltrán MA (1999) Distribución, volcanología física, composición y edad de las lavas del tercio norte de Baja California Sur. Master Thesis Dissertation. Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California, p 159Google Scholar
  63. Rubin AM (1995) Propagation of magma-filled cracks. Annu Rev Earth Planet Sci 23:287–336CrossRefGoogle Scholar
  64. Settle M (1979) The structure and emplacement of cinder cone fields. Am J Sci 279:1089–1107CrossRefGoogle Scholar
  65. Sheather SJ, Jones MC (1991) A reliable data-based bandwidth selection method for kernel density estimation. J R Stat Soc Series B 53:683–690Google Scholar
  66. Stock JM, Hodges KV (1989) Pre-Pliocene extension around the Gulf of California and the transfer of Baja California to the Pacific plate. Tectonics 8:99–115CrossRefGoogle Scholar
  67. Takada A (1994) The influence of regional stress and magmatic input on styles of monogenetic and polygenetic volcanism. J Geophys Res J Geophys Res 99:563–573Google Scholar
  68. Tamura Y, Tatsumi Y, Zhao D, Kido Y, Shukuno H (2002) Hot fingers in the mantle wedge: new insights into magma genesis in subduction zones. Earth Planet Sci Lett 197:105–116CrossRefGoogle Scholar
  69. Tamura J, Nakajima J, Kodaira S, Hasegawa A (2009). Tectonic setting of volcanic centers in subduction zones: three-dimensional structure of mantle wedge and arc crust. In: Connor CB, Chapman NA, Connor LJ (eds) Volcanic and tectonic hazard assessment for nuclear facilities. Cambridge University Press, Cambridge, pp 176–194Google Scholar
  70. Teyssier CB, Tikoff M, Markley M (1995) Oblique plate motion and continental tectonics. Geology 23:447–450CrossRefGoogle Scholar
  71. Tibaldi A (1995) Morphology of pyroclastic cones and tectonics. J Geophys Res 100(B12):24521–24535CrossRefGoogle Scholar
  72. Valentine GA, Krogh KEC (2006) Emplacement of shallow dikes and sills beneath a small basaltic volcanic center: the role of pre-existing structure (Paiute Ridge, southern Nevada, USA). Earth Planet Sci Lett 246(3–4):217–230CrossRefGoogle Scholar
  73. Valentine GA, Perry FV (2006) Decreasing magmatic footprints of individual volcanoes in a waning basaltic field. Geophys Res Lett 33(14), L14305Google Scholar
  74. Wadge G, Cross A (1988) Quantitative methods for detecting aligned points: an application to the volcanic vents of the Michoacán-Guanajuato volcanic field, Mexico. Geology 16:815–818CrossRefGoogle Scholar
  75. Walker GPL (1993) Basaltic-volcano systems. Geol Soc Lond Spec Publ 76:3–38CrossRefGoogle Scholar
  76. Wand MP, Jones MC (1994) Multivariate plugin bandwidth selection. Comput Stat 9:97–116Google Scholar
  77. Wand MP, Jones MC (1995) Kernel Smoothing. No. 60. In: Monographs on Statistics and Applied Probability, Chapman and Hall: pp 224Google Scholar
  78. Weller JN, Martin AJ, Connor CB, Connor LJ, Karakhanian A (2006) Modelling the spatial distribution of volcanoes: an example from Armenia. In: Mader HM, Coles SG, Connor CB, Connor LJ (eds) Statistics in Volcanology. Geological Society, London, pp 77–87Google Scholar
  79. Wood C (1980) Morphometric evolution of cinder cones. J Volcanol Geotherm Res 7:387–413CrossRefGoogle Scholar
  80. Zhang X, Paulssen H, Lebedev S, Meier T (2009) 3D shear velocity structure beneath the Gulf of California from Rayleigh wave dispersion. Earth Planet Sci Lett 279(3–4):255–262CrossRefGoogle Scholar
  81. Ziv A, Rubin AM, Agnon A (2000) Stability of dike intrusion along preexisting fractures. J Geophys Res 105(B3):5947–5961CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aurélie Germa
    • 1
    • 2
  • Laura J. Connor
    • 1
  • Edgardo Cañon-Tapia
    • 2
  • Nicolas Le Corvec
    • 3
  1. 1.School Of GeosciencesUniversity of South FloridaTampaUSA
  2. 2.Geology DepartmentCICESEEnsenadaMexico
  3. 3.Lunar and Planetary InstituteUSRAHoustonUSA

Personalised recommendations