Skip to main content
Log in

Contrasting radon background levels in volcanic settings: clues from 220Rn activity concentrations measured during long-term deformation experiments

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

To better understand the mechanisms leading to different radon background levels in volcanic settings, we have performed two long-term deformation experiments of 16 days using a real-time setup that enables us to monitor any variation of radon activity concentration during rock compression. Our measurements demonstrate that, in the case of highly porous volcanic rocks, the emanating power of the substrate changes as a function of the volcanic stress conditions. Constant magmatic pressures, such as those observed during dike intrusions and hydrothermal fluid injections, can result in pervasive pore collapse that is mirrored by a significant radon decrease until a constant emanation is achieved. Conversely, repeated cycles of stress due to, for example, volcano inflation/deflation cycles, cause a progressive radon increase a few days (but even weeks and months) before rupture. After rock failure, however, the formation of new emanation surfaces leads to a substantial increase of the radon signal. Our results suggest that surface deformation in tectonic and volcanic settings, such as inflation/deflation or constant magmatic pressures, have important repercussions on the emanating power of volcanic substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alparone S, Behncke B, Giammanco S, Neri M, Privitera E (2005) Paroxysmal summit activity at Mt. Etna (Italy) monitored through continuous soil radon measurements. Geophys Res Lett 32, L16307

    Article  Google Scholar 

  • Banerjee KS, Basu A, Guin R, Sengupta D (2011) Radon (222Rn) level variations on a regional scale from the Singhbhum Shear Zone, India: a comparative evaluation between influence of basement U-activity and porosity. Rad Phys Chem 80:614–619

    Article  Google Scholar 

  • Bonforte A, Federico C, Giammanco S, Guglielmino F, Liuzzo M, Neri M (2013) Soil gases and SAR data reveal hidden faults on the sliding flank of Mt. Etna (Italy). J Volcanol Geotherm Res 251:27–40

    Article  Google Scholar 

  • Burton M, Neri M, Condarelli D (2004) High spatial resolution radon measurements reveal hidden active faults on Mt. Etna. Geophys Res Lett 31, L07618

    Article  Google Scholar 

  • Chiodini G, Caliro S, Aiuppa A, Avino R, Granieri D, Moretti R, Parello F (2011) First 13C/12C isotopic characterization of volcanic plume CO2. Bull Volcanol 73:531–542

    Article  Google Scholar 

  • Del Gaudio P, Mollo S, Ventura G, Iezzi G, Taddeucci I, Cavallo A (2010) Cooling rate-induced differentiation in anhydrous and hydrous basalts at 500 MPa: implications for the storage and transport of magmas in dikes. Chem Geol 270:164–178. doi:10.1016/j.chemgeo.2009.11.014

    Article  Google Scholar 

  • Giammanco S, Sims KWW, Neri M (2007) Measurements of 220Rn and 222Rn and CO2 emissions in soil and fumarole gases on Mt. Etna volcano (Italy): implications for gas transport and shallow ground fracture. Geochem Geophys Geosyst 8, Q10001. doi:10.1029/2007GC001644

    Article  Google Scholar 

  • Giammanco S, Immè G, Mangano G, Morelli D, Neri M (2009) Comparison between different methodologies for detecting radon in soil along an active fault: the case of the Pernicana fault system, Mt. Etna. Appl Radiat Isot 67:178–185. doi:10.1016/j.apradiso.2008.09.007

    Article  Google Scholar 

  • Heap MJ, Faulkner DR, Meredith PG, Vinciguerra S (2010) Elastic moduli evolution and accompanying stress changes with increasing crack damage: implications for stress changes around fault zones and volcanoes during deformation. Geophys J Int 183:225–236

    Article  Google Scholar 

  • Heap MJ, Mollo S, Vinciguerra S, Lavallée Y, Hess K-U, Dingwell DB, Baud P, Iezzi G (2013) Thermal weakening of the carbonate basement under Mt. Etna volcano (Italy): implications for volcano instability. J Volcanol Geotherm Res 250:42–60. doi:10.1016/j.jvolgeores.2012.10.004

    Article  Google Scholar 

  • Holub RF, Brady BT (1981) The effect of stress on radon emanation from rock. J Geophys Res 86:1776–1784

    Article  Google Scholar 

  • Lanzafame G, Mollo S, Iezzi G, Ferlito C, Ventura G (2013) Unraveling the solidification path of a pahoehoe “cicirara” lava from Mount Etna volcano. Bull Volcanol 75:703–719. doi:10.1007/s00445-013-0703-8

    Google Scholar 

  • Mollo S, Del Gaudio P, Ventura G, Iezzi G, Scarlato P (2010) Dependence of clinopyroxene composition on cooling rate in basaltic magmas: implications for thermobarometry. Lithos 118:302–312. doi:10.1016/j.lithos.2010.05.006

    Article  Google Scholar 

  • Mollo S, Tuccimei P, Heap MJ, Vinciguerra S, Soligo M, Castelluccio M, Scarlato P, Dingwell DB (2011a) Increase in radon emission due to rock failure: an experimental study. Geophys Res Lett 38, L14304

    Article  Google Scholar 

  • Mollo S, Vinciguerra S, Iezzi G, Iarocci A, Scarlato P, Heap MJ, Dingwell DB (2011b) Volcanic edifice weakening via devolatilization reactions. Geophys J Int 186:1073–1077. doi:10.1111/j.1365-246X.2011.05097.x

    Article  Google Scholar 

  • Mollo S, Lanzafame G, Masotta M, Iezzi G, Ferlito C, Scarlato P (2011c) Cooling history of a dike as revealed by mineral chemistry: a case study from Mt. Etna volcano. Chem Geol 283:261–273. doi:10.1016/j.chemgeo.2011.06.016

    Article  Google Scholar 

  • Mollo S, Heap MJ, Iezzi G, Hess K-U, Scarlato P, Dingwell DB (2012) Volcanic edifice weakening via decarbonation: a self-limiting process? Geophys Res Lett 39, L15307. doi:10.1029/2012GL052613

    Article  Google Scholar 

  • Mollo S, Scarlato P, Lanzafame G, Ferlito C (2013a) Deciphering lava flow post-eruption differentiation processes by means of geochemical and isotopic variations: a case study from Mt. Etna volcano. Lithos 162–163:115–127. doi:10.1016/j.lithos.2012.12.020

    Article  Google Scholar 

  • Mollo S, Putirka K, Misiti V, Soligo M, Scarlato P (2013b) A new test for equilibrium based on clinopyroxene–melt pairs: clues on the solidification temperatures of etnean alkaline melts at post-eruptive conditions. Chem Geol. doi:10.1016/j.chemgeo.2013.05.026

    Google Scholar 

  • Mollo S, Putirka K, Iezzi G, Scarlato P (2013c) The control of cooling rate on titanomagnetite composition: implications for a geospeedometry model applicable to alkaline rocks from Mt. Etna volcano. Contrib Mineral Petrol 165:457–475. doi:10.1007/s00410-012-0817-6

    Article  Google Scholar 

  • Neri M, Behncke B, Burton M, Giammanco S, Pecora E, Privitera E, Reitano D (2006) Continuous soil radon monitoring during the July 2006 etna eruption. Geophys Res Lett 3, L24316. doi:10.1029/2006GL028394

    Article  Google Scholar 

  • Neri M, Guglielmino F, Rust D (2007) Flank instability on Mount etna: radon, radar interferometry, and geodetic data from the southern boundary of the unstable sector. J Geophys Res 112, B04410. doi:10.1029/2006JB004756"

    Article  Google Scholar 

  • Perini G, Conticelli S, Francalanci L, Davidson JP (2000) The relationship between potassic and calc–alkaline post-orogenic magmatism at Vico volcano, central Italy. J Volcanol Geotherm Res 95:243–268

    Article  Google Scholar 

  • Planinic J, Radolic V, Vukovic B (2004) Radon as an earthquake precursor. Nucl Instrum Methods Phys Res A 530:568–574

    Article  Google Scholar 

  • Sengupta D, Ghosh A, Mamtani MA (2005) Radioactivity studies along fracture zones in areas around Galudih, East Singhbhum, Jharkhand, India. Appl Radiat Isot 63:409–414

    Article  Google Scholar 

  • Siniscalchi A, Tripaldi S, Neri M, Giammanco S, Piscitelli S, Balasco M, Behncke B, Magrì C, Naudet V, Rizzo E (2010) Insights into fluid circulation across the Pernicana Fault (Mt. Etna, Italy) and implications for flank instability. J Volcanol Geotherm Res 193:137–142. doi:10.1016/j.jvolgeores.2010.03.013

    Article  Google Scholar 

  • Tansi C, Tallarico A, Iovine G, Folino-Gallo M, Falcone G (2005) Interpretation of radon anomalies in seismotectonic and tectonicgravitational settings: the south-eastern Crati graben (northern Calabria, Italy). Tectonophysics 396:181–193

    Article  Google Scholar 

  • Thomas DM, Cox ME, Cuff KE (1986) The association between ground gas radon variations and geologic activity in Hawaii. J Geophys Res 91:12186–12198

    Article  Google Scholar 

  • Tuccimei P, Moroni M, Norcia D (2006) Simultaneous determination of 222Rn and 220Rn exhalation rates from building materials used in Central Italy with accumulation chambers and a continuous solid state alpha detector: influence of particle size, humidity and precursors concentration. Appl Radiat Isot 64:254–263

    Article  Google Scholar 

  • Tuccimei P, Castelluccio M, Soligo M, Moroni M (2009) Radon exhalation rates of building materials: experimental, analytical protocol and classification criteria. In: Cornejo DN, Haro JL (eds) Building materials: properties, performance and applications. Nova Sci, Hauppauge, pp 259–273

    Google Scholar 

  • Tuccimei P, Mollo S, Vinciguerra S, Castelluccio M, Soligo M (2010) Radon and thoron emission from lithophysae-rich tuff under increasing deformation: an experimental study. Geophys Res Lett 37, L05406

    Article  Google Scholar 

  • Tuccimei P, Castelluccio M, Moretti S, Mollo S, Vinciguerra S, Scarlato P (2011) Thermal enhancement of radon emission from geological materials. Implications for laboratory experiments on rocks under increasing deformation. In: Veress B, Szigethy J (eds) Horizons in earth science research, vol 4. Nova Sci, Hauppauge, pp 247–256

    Google Scholar 

  • Voltaggio A, Masi U, Spadoni M, Zampetti G (2006) A methodology for assessing the maximum expected radon flux from soils in Northern Latium (Central Italy). Environ Geochem Health 28:541–551. doi:10.1007/s10653-006-9051-3

    Article  Google Scholar 

  • Zhu W, Wong T-f (1997) The transition from brittle faulting to cataclastic flow: permeability evolution. J Geophys Res 102:3027–3041

    Google Scholar 

Download references

Acknowledgments

S. Mollo was supported by PRIN MIUR “Understanding the role of deformation mechanisms and temperature on the radon and thoron exhalation rates from stressed volcanic rocks: an experimental study” and ERC starting grant 259256 GLASS project. The research activities of the HP-HT laboratory of the INGV were supported by the European Observing System Infrastructure Project (EPOS). We are grateful to the two reviewers for their constructive comments on the original manuscript. The associate editor C. Oppenheimer and the executive editor J. D. L. White are also acknowledged for their useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvio Mollo.

Additional information

Editorial responsibility: C. Oppenheimer

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

XLS 84 kb

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scarlato, P., Tuccimei, P., Mollo, S. et al. Contrasting radon background levels in volcanic settings: clues from 220Rn activity concentrations measured during long-term deformation experiments. Bull Volcanol 75, 751 (2013). https://doi.org/10.1007/s00445-013-0751-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-013-0751-0

Keywords

Navigation