Bulletin of Volcanology

, 75:736 | Cite as

European summer temperature response to annually dated volcanic eruptions over the past nine centuries

  • Jan EsperEmail author
  • Lea Schneider
  • Paul J. Krusic
  • Jürg Luterbacher
  • Ulf Büntgen
  • Mauri Timonen
  • Frank Sirocko
  • Eduardo Zorita
Research Article


The drop in temperature following large volcanic eruptions has been identified as an important component of natural climate variability. However, due to the limited number of large eruptions that occurred during the period of instrumental observations, the precise amplitude of post-volcanic cooling is not well constrained. Here we present new evidence on summer temperature cooling over Europe in years following volcanic eruptions. We compile and analyze an updated network of tree-ring maximum latewood density chronologies, spanning the past nine centuries, and compare cooling signatures in this network with exceptionally long instrumental station records and state-of-the-art general circulation models. Results indicate post-volcanic June–August cooling is strongest in Northern Europe 2 years after an eruption (−0.52 ± 0.05 °C), whereas in Central Europe the temperature response is smaller and occurs 1 year after an eruption (−0.18 ± 0.07 °C). We validate these estimates by comparison with the shorter instrumental network and evaluate the statistical significance of post-volcanic summer temperature cooling in the context of natural climate variability over the past nine centuries. Finding no significant post-volcanic temperature cooling lasting longer than 2 years, our results question the ability of large eruptions to initiate long-term temperature changes through feedback mechanisms in the climate system. We discuss the implications of these findings with respect to the response seen in general circulation models and emphasize the importance of considering well-documented, annually dated eruptions when assessing the significance of volcanic forcing on continental-scale temperature variations.


Volcanic forcing Tree-rings Climate Instrumental stations Maximum latewood density Europe 



The study was supported by the Mainz Geocycles Research Centre. J.L. acknowledges support from the EU/FP7 project ACQWA (NO212250), the DFG Projects PRIME 2 (“PRecipitation In past Millennia in Europe- extension back to Roman times”) within the Priority Program “INTERDYNAMIK” and “Historical climatology of the Middle East based on Arabic sources back to ad 800.”

Supplementary material

445_2013_736_MOESM1_ESM.docx (715 kb)
ESM 1 (DOCX 715 kb)


  1. Ammann CM, Joos F, Schimel DS, Otto-Bliesner BL, Tomas RA (2007) Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model. Proc Nat Acad Sci 104:3713–3718CrossRefGoogle Scholar
  2. Anchukaitis KJ, Buckley BM, Cook ER, Cook BI, D’Arrigo RD, Ammann CM (2010) The influence of volcanic eruptions on the climate of the Asian monsoon region. Geophys Res Lett 37. doi:10.1029/2010GL044843Google Scholar
  3. Anchukaitis KJ et al (2012) Tree rings and volcanic cooling. Nat Geosc 5:836–837CrossRefGoogle Scholar
  4. Angell JK, Korshover J (1985) Surface temperature changes following the six major volcanic episodes between 1780 and 1980. J Clim Appl Meteorol 24:937–951CrossRefGoogle Scholar
  5. Baillie MGL (2010) Volcanoes, ice-cores and tree-rings: one story or two? Antiquity 84:202–215Google Scholar
  6. Baillie MGL (2008) Proposed re-dating of the European ice core chronology by seven years prior to the 7th century AD. Geophys Res Lett 35. doi:10.1029/2008GL034755Google Scholar
  7. Barnston AG, Livezey RE (1987) Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon Wea Rev 115:1083–1126CrossRefGoogle Scholar
  8. Briffa KR, Jones PD, Schweingruber FH, Osborn TJ (1998) Influence of volcanic eruptions on Northern Hemisphere summer temperature over the past 600 years. Nature 393:450–455CrossRefGoogle Scholar
  9. Büntgen U, Frank DC, Nievergelt D, Esper J (2006) Summer temperature variations in the European Alps, AD 755–2004. J Clim 19:5606–5623CrossRefGoogle Scholar
  10. Büntgen U, Frank DC, Grudd H, Esper J (2008) Long-term summer temperature variations in the Pyrenees. Clim Dyn 31:615–631CrossRefGoogle Scholar
  11. Büntgen U, Frank D, Trouet V, Esper J (2010) Diverse climate sensitivity of Mediterranean tree-ring width and density. Trees 24:261–273CrossRefGoogle Scholar
  12. Büntgen U et al (2011) European climate variability and human susceptibility over the past 2500 years. Science 331:578–582CrossRefGoogle Scholar
  13. Church J, White N, Arblaster JM (2005) Significant decadal-scale impact of volcanic eruptions on sea level and ocean heart content. Nature 438:74–77CrossRefGoogle Scholar
  14. Cole-Dai J (2010) Volcanoes and climate. WIREs Clim Change 1:824–839CrossRefGoogle Scholar
  15. Cook ER, Kairiukstis LA (eds) (1990) Methods of dendrochronology: applications in environmental science. Kluwer, DordrechtGoogle Scholar
  16. Crowley TJ (2000) Causes of climate change over the past 1000 years. Science 289:270–277CrossRefGoogle Scholar
  17. Crowley T, Zielinski G, Vinther B, Udisti R, Kreutz K, Cole-Dai J, Castellano E (2008) Volcanism and the Little Ice Age. PAGES Newsl 16:22–23Google Scholar
  18. Crowley TJ, Unterman MB (2012) Technical details concerning development of a 1200-yr proxy index for global volcanism. Earth Syst Sci Data Discus 5:1–28CrossRefGoogle Scholar
  19. D’Arrigo R, Wilson R, Tudhope A (2009) Impact of volcanic forcing on tropical temperatures during the last four centuries. Nat GeoSci 2:51–56CrossRefGoogle Scholar
  20. Douglass AE (1920) Evidence of climate effects in the annual rings of trees. Ecology 1:24–32CrossRefGoogle Scholar
  21. Driscoll S, Bozzo A, Gray LJ, Robock A, Stenchikov G (2012) Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J Geophys Res 117. doi:10.1029/2012JD017607Google Scholar
  22. Esper J, Cook ER, Schweingruber FH (2002) Low-frequency signals in long tree-ring chronologies and the reconstruction of past temperature variability. Science 295:2250–2253CrossRefGoogle Scholar
  23. Esper J, Frank DC, Wilson RJS, Briffa KR (2005) Effect of scaling and regression on reconstructed temperature amplitude for the past millennium. Geophys Res Lett 32. doi:10.1029/2004GL021236Google Scholar
  24. Esper J, Büntgen U, Frank DC, Nievergelt D, Liebhold A (2007a) 1200 years of regular outbreaks in alpine insects. Proceed Royal Soc B 274:671–679CrossRefGoogle Scholar
  25. Esper J, Büntgen U, Frank D, Pichler T, Nicolussi K (2007b) Updating the Tyrol tree-ring dataset. In: Haneca K, et al. (eds), Tree rings in archaeology, climatology and ecology. Trace 5:80–85Google Scholar
  26. Esper J, Frank DC, Büntgen U, Verstege A, Hantemirov RM, Kirdyanov AV (2010) Trends and uncertainties in Siberian indicators of 20th century warming. Glob Change Biol 16:386–398CrossRefGoogle Scholar
  27. Esper J, Büntgen U, Timonen M, Frank DC (2012a) Variability and extremes of Northern Scandinavian summer temperatures over the past millennia. Glob Plan Change 88–89:1–9CrossRefGoogle Scholar
  28. Esper J, Frank DC, Timonen M, Zorita E, Wilson RJS, Luterbacher J, Holzkämper S, Fischer N, Wagner S, Nievergelt D, Verstege A, Büntgen U (2012b) Orbital forcing of tree-ring data. Nat Clim Change 2:862–866CrossRefGoogle Scholar
  29. Esper J, Büntgen U, Luterbacher J, Krusic P (2013) Testing the hypothesis of post-volcanic missing rings in temperature sensitive dendrochronological data. Dendrochronologia, 10.1016/j.dendro.2012.11.002
  30. Farquhar GD, Roderick ML (2003) Pinatubo, diffuse light, and the carbon cycle. Science 299:1997–1998CrossRefGoogle Scholar
  31. Fernández-Donado L et al (2013) Large-scale temperature response to external forcing in simulations and 50 reconstructions of the last millennium. Clim Past 9:393–421CrossRefGoogle Scholar
  32. Fischer EM, Luterbacher J, Zorita E, Tett FB, Casty C, Wanner H (2007) European climate response to tropical volcanic eruptions over the last half millennium. Geophys Res Lett 34, L05707. doi:10.1029/2006GL027992Google Scholar
  33. Frank D, Büntgen U, Böhm R, Maugeri M, Esper J (2007) Warmer early instrumental measurements versus colder reconstructed temperatures: shooting at a moving target. Quat Sc Rev 26:3298–3310CrossRefGoogle Scholar
  34. Frank D, Esper J, Zorita E, Wilson RJS (2010) A noodle, hockey stick, and spaghetti plate: a perspective on high-resolution paleoclimatology. WIREs Clim Change 1:507–516CrossRefGoogle Scholar
  35. Gao C, et al. (2006) The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years. J Geophys Res 111. doi: 10.1029/2005JD006710
  36. Gao C, Robock A, Ammann C (2008) Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models. J Geophys Res 113:D23111. doi: 10.1029/2008JD010239 CrossRefGoogle Scholar
  37. Gent PR et al (2011) The Community Climate System Model version 4. J Climate 24:4973–4991CrossRefGoogle Scholar
  38. Gleckler PJ, AchutaRao K, Gregory JM, Santer BD, Taylor KE, Wigley TML (2006) Krakatoa lives: the effect of volcanic eruptions on ocean heat content and thermal expansion. Geophys Res Lett 33. doi:10.1029/2006GL026771Google Scholar
  39. Graham NE et al (2007) Tropical Pacific–mid-latitude teleconnections in medieval times. Clim Change 83:241–285CrossRefGoogle Scholar
  40. Graham NE, Ammann CM, Fleitmann D, Cobb KM, Luterbacher J (2011) Support for global climate reorganization during the “Medieval Climate Anomaly. Clim Dyn 37:1217–1245CrossRefGoogle Scholar
  41. Grove JM (2001) The initiation of the “Little Ice Age” in regions round the North Atlantic. Clim Change 48:53–82CrossRefGoogle Scholar
  42. Grudd H (2008) Tornetraesk tree-ring width and density AD 500–2004: a test of climatic sensitivity and a new 1500-year reconstruction of north Fennoscandian summers. Clim Dyn 31:843–857CrossRefGoogle Scholar
  43. Gunnarson BE, Linderholm HW, Moberg A (2010) Improving a tree-ring reconstruction from west-central Scandinavia—900 years of warm-season temperatures. Clim Dyn. doi:10.1007/s00382-010-0783-5Google Scholar
  44. Hammer CU, Clausen HB, Dansgaard W (1980) Greenland ice sheet evidence of post-glacial volcanism and its climatic impact. Nature 288:230–235CrossRefGoogle Scholar
  45. Hammer CU, Clausen HB, Tauber H (1986) Ice-cored dating of the Pleistocene/Holocene boundary applied to a calibration of the 14C timescale. Radiocarbon 28:284–291Google Scholar
  46. Hegerl GC, Crowley TS, Baum SK, Kim K-Y, Hyde WT (2003) Detection of volcanic, solar and greenhouse gas signals in paleo-reconstructions of Northern Hemispheric temperature. Geophys Res Lett 30. doi:10.1029/2002GL016635Google Scholar
  47. Hegerl G, Luterbacher J, González-Rouco F, Tett SFB, Crowley TJ, Xoplaki E (2011) Influence of human and natural forcing on European seasonal temperatures. Nat Geosci 4:99–103CrossRefGoogle Scholar
  48. Jones PD, Moberg A, Osborn TJ, Briffa KR (2003) Surface climate responses to explosive volcanic eruptions seen in long European temperature records and mid-to-high latitude tree-ring density around the Northern Hemisphere. Geophys Monogr Ser 139:239–254CrossRefGoogle Scholar
  49. Jones PD, Lister DH, Osborn TJ, Harpham C, Salmon M, Morice CP (2012) Hemispheric and large-scale land surface air temperature variations: an extensive revision and an update to 2010. J Geophys Res 117:D05127. doi: 10.1029/2011JD017139 CrossRefGoogle Scholar
  50. Jungclaus JH et al (2010) Climate and carbon-cycle variability over the last millennium. Clim Past 6:723–737CrossRefGoogle Scholar
  51. Kelly PM, Sear CB (1984) Climatic impact of explosive volcanic eruptions. Nature 311:740–743CrossRefGoogle Scholar
  52. Krakauer NY, Randerson JT (2003) Do volcanic eruptions enhance or diminish net primary production? Evidence from tree rings. Glob Biogeochem Cycl 17. doi:10.1029/2003GB002076Google Scholar
  53. Kurbatov AV, Zielinski GA, Dunbar NW, Mayewski PA, Meyerson EA, Sneed SB, Taylor KC (2006) A 12,000 year record of explosive volcanism in the Siple Dome Ice Core, West Antarctica. J Geophys Res 111:D12307. doi: 10.1029/2005JD006072 CrossRefGoogle Scholar
  54. LaMarche VC, Hirschboeck KK (1984) Frost rings in trees as records of major volcanic eruptions. Nature 307:121–126CrossRefGoogle Scholar
  55. Langway CC, Clausen HB, Hammer CU (1988) An inter-hemispheric volcanic time-marker in cores from Greenland and Antarctica. Ann Glaciol 10:102–108Google Scholar
  56. Mann ME, Fuentes JD, Rutherford S (2012) Underestimation of volcanic cooling in tree-ring-based reconstructions of hemispheric temperatures. Nat Geosc 5:202–205CrossRefGoogle Scholar
  57. Mass CF, Portman DA (1989) Major volcanic eruptions and climate: a critical evaluation. J Clim 2:566–593CrossRefGoogle Scholar
  58. McCormick PM, Wang PH, Poole LR (1993) Stratospheric aerosols and clouds. In: Hobbs PV (ed) Aerosol-cloud-climate interactions. Academic Press, San Diego, pp 205–222CrossRefGoogle Scholar
  59. Miller GH et al (2012) Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys Res Lett 39:L02708. doi: 10.1029/ 2011GL050168 CrossRefGoogle Scholar
  60. Moser L, Fonti P, Büntgen U, Esper J, Luterbacher J, Franzen J, Frank D (2010) Timing and duration of European larch growing season along an altitudinal gradient in the Swiss Alps. Tree Physiol 30:225–233CrossRefGoogle Scholar
  61. Mitchell TM, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712CrossRefGoogle Scholar
  62. Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238CrossRefGoogle Scholar
  63. Oppenheimer C (2003) Ice core and palaeoclimatic evidence for the timing and nature of the great mid-13th century volcanic eruptions. Int J Climatol 23:417–426CrossRefGoogle Scholar
  64. Panofsky HA, Brier GW (1958) Some applications of statistics to meteorology. Univ. Park, PennsylvaniaGoogle Scholar
  65. Plummer CT et al (2012a) An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the c. 1450s eruption of Kuwae, Vanuatu. Clim Past Discus 8:1567–1590CrossRefGoogle Scholar
  66. Robock A, Free MP (1995) Ice cores as an index of global volcanism from 1850 to the present. J Geophys Res 100:11549–11567CrossRefGoogle Scholar
  67. Robock A, Mao J (1995) The volcanic signal in surface temperature observations. J Clim 8:1086–1103CrossRefGoogle Scholar
  68. Robock A (2000) Volcanic eruptions and climate. Rev Geophys 38:191–219CrossRefGoogle Scholar
  69. Salzer MW, Hughes MK (2007) Bristlecone pine tree rings and volcanic eruptions over the last 5000 yr. Quat Res 2007(67):57–68CrossRefGoogle Scholar
  70. Schneider DP, Ammann CM, Otto-Bliesner BL, Kaufman DS (2009) Climate response to large, high-latitude and low-latitude volcanic eruptions in the Community Climate System Model. J Geophys Res 114:D15101. doi: 10.1029/2008JD011222 CrossRefGoogle Scholar
  71. Schweingruber FH, Fritts HC, Bräker OU, Drew LG, Schaer E (1978) The X-ray technique as applied to dendroclimatology. Tree-Ring Bull 38:61–91Google Scholar
  72. Schweingruber FH, Bartholin T, Schär E, Briffa KR (1988) Radiodensitometric–dendroclimatological conifer chronologies from Lapland (Scandinavia) and the Alps (Switzerland). Boreas 17:559–566CrossRefGoogle Scholar
  73. Sear CB, Kelly PM, Jones PD, Goodess CM (1987) Global surface temperatures responses to major volcanic eruptions. Nature 330:365–367CrossRefGoogle Scholar
  74. Self S, Rampino MR, Barbera JJ (1981) The possible effects of large 19th and 20th century volcanic eruptions on zonal and hemispheric surface temperatures. J Vol Geoth Res 11:41–60CrossRefGoogle Scholar
  75. Sigl M, et al. (2012) A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years J Geophys Res doi: 10.1029/2012JD018603, in press
  76. Plummer CT et al (2012b) An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the c. 1450s eruption of Kuwae, Vanuatu. Clim Past Discuss 8:1567–1590CrossRefGoogle Scholar
  77. Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the world. Univ. California Press, LondonGoogle Scholar
  78. Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press, CambridgeGoogle Scholar
  79. Stenchikov G, Hamilton K, Stouffer RJ, Robock A, Ramaswamy V, Santer B, Graf HF (2006) Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J Geophys Res 111. doi:10.1029/2005JD006286Google Scholar
  80. Stothers RB (1984) The great Tambora eruption in 1815 and its aftermath. Science 224:1191–1198CrossRefGoogle Scholar
  81. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experimental design. Bull Amer Meteor Soc 93:485–497CrossRefGoogle Scholar
  82. Timmreck C, Lorenz SJ, Crowley TJ, Kinne S, Raddatz TJ, Thomas MA, Jungclaus JH (2009) Limited temperature response to the very large AD 1258 volcanic eruption. Geophys Res Lett 36. doi:10.1029/2009GL040083Google Scholar
  83. Traufetter F, Oerter H, Fischer H, Weller R, Miller H (2004) Spatio-temporal variability in volcanic sulphate deposition over the past 2 kyrs in snow pits and firn cores from Amundsenisen, Antarctica. Claciol 50:137–146Google Scholar
  84. Trepte CR, Hitchman MH (1992) tropical stratospheric circulation deduced from satellite aerosol data. Nature 355:626–628CrossRefGoogle Scholar
  85. Trouet V, Esper J, Graham NE, Baker A, Scourse JD, Frank DC (2009) Persistent positive North Atlantic Oscillation mode dominated the Medieval Climate Anomaly. Science 324:78–80CrossRefGoogle Scholar
  86. Wagner S, Zorita E (2005) The influence of volcanic, solar and CO2 forcing on the temperatures in the Dalton Minimum (1790–1830): a model study. Clim Dyn 25:205–218CrossRefGoogle Scholar
  87. Zanchettin D, Timmreck C, Bothe O, Lorenz S, Hegerl G, Graf H-F, Luterbacher J, Jungclaus JH (2013a) Delayed winter warming: a decadal dynamical response to strong tropical volcanic eruptions. Geophys Res Lett 40:204–209CrossRefGoogle Scholar
  88. Zanchettin D, Bothe O, Graf H-F, Luterbacher J, Jungclaus JH, Timmreck C (2013b) Background conditions influence decadal climate response to strong volcanic eruptions. J Geophys Res. doi:10.1002/jgrd.50229Google Scholar
  89. Zielinski GA (1995) Stratospheric loading and optical depth estimates of explosive volcanism over the last 2100 years derived from the Greenland Ice Sheet Project 2 ice core. J Geophys Res 100:20937–20955CrossRefGoogle Scholar
  90. Zorita E, Gonzlez-Rouco F, von Storch H, Montavez JP, Valero F (2005) Natural and anthropogenic modes of surface temperature variations in the last thousand years. Geophys Res Lett 32:L08707. doi: 10.1029/2004GL021563 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jan Esper
    • 1
    Email author
  • Lea Schneider
    • 1
  • Paul J. Krusic
    • 2
  • Jürg Luterbacher
    • 3
  • Ulf Büntgen
    • 4
    • 8
    • 9
  • Mauri Timonen
    • 5
  • Frank Sirocko
    • 6
  • Eduardo Zorita
    • 7
  1. 1.Department of GeographyJohannes Gutenberg UniversityMainzGermany
  2. 2.Department of Physical Geography and Quaternary GeologyStockholm UniversityStockholmSweden
  3. 3.Department of Geography, Climatology, Climate Dynamics and Climate ChangeJustus-Liebig UniversityGiessenGermany
  4. 4.Swiss Federal Research Institute WSLBirmensdorfSwitzerland
  5. 5.Finnish Forest Research InstituteRovaniemi Research UnitRovaniemiFinland
  6. 6.Institute for GeoscienceJohannes Gutenberg UniversityMainzGermany
  7. 7.Institute for Coastal Research, HZG Research CentreGeesthachtGermany
  8. 8.Oeschger Centre for Climate Change Research (OCCR)BernSwitzerland
  9. 9.Global Change Research Centre AS CRBrnoCzech Republic

Personalised recommendations