Skip to main content
Log in

The 1815 Tambora ash fall: implications for transport and deposition of distal ash on land and in the deep sea

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Tambora volcano lies on the Sanggar Peninsula of Sumbawa Island in the Indonesian archipelago. During the great 1815 explosive eruption, the majority of the erupted pyroclastic material was dispersed and subsequently deposited into the Indian Ocean and Java Sea. This study focuses on the grain size distribution of distal 1815 Tambora ash deposited in the deep sea compared to ash fallen on land. Grain size distribution is an important factor in assessing potential risks to aviation and human health, and provides additional information about the ash transport mechanisms within volcanic umbrella clouds. Grain size analysis was performed using high precision laser diffraction for a particle range of 0.2 μm–2 mm diameter. The results indicate that the deep-sea samples provide a smooth transition to the land samples in terms of grain size distributions despite the different depositional environments. Even the very fine ash fraction (<10 μm) is deposited in the deep sea, suggesting vertical density currents as a fast and effective means of transport to the seafloor. The measured grain size distribution is consistent with an improved atmospheric gravity current sedimentation model that takes into account the finite duration of an eruption. In this model, the eruption time and particle fall velocity are the critical parameters for assessing the ash component depositing while the cloud advances versus the ash component depositing once the eruption terminates. With the historical data on eruption duration (maximum 24 h) and volumetric flow rate of the umbrella cloud (∼1.5–2.5 × 1011 m3/s) as input to the improved model, and assuming a combination of 3 h Plinian phase and 21 h co-ignimbrite phase, it reduces the mean deviation of the predicted versus observed grain size distribution by more than half (∼9.4 % to ∼3.7 %) if both ash components are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. National Geophysical Data Center, NOAA, Technical Memorandum NESDID NGDC-24

  • Baines PG, Sparks RSJ (2005) Dynamics of giant volcanic ash clouds from supervolcanic eruptions. Geophys Res Lett 32(L24808):1–2. doi:10.1029/2005GL024597

    Google Scholar 

  • Bonadonna C, Phillips JC (2003) Sedimentation from strong volcanic plumes. J Geophys Res 108(B72340):1–2. doi:10.1029/2002JB002034

    Google Scholar 

  • Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81:173–187. doi:10.1016/S0377-0273(98)00007-9

    Article  Google Scholar 

  • Brazier S, Davis AN, Sigurdsson H, Sparks RSJ (1982) Fall-out and deposition of volcanic ash during the 1979 explosive eruption of the Soufriere of St. Vincent. J Volcanol Geotherm Res 14:335–359. doi:10.1016/0377-0273(82)90069-5

    Article  Google Scholar 

  • Brazier S, Sparks RSJ, Carey SN, Sigurdsson H, Westgate JA (1983) Bimodal distribution and secondary thickening in air-fall ash layers. Nature 301:115–119

    Article  Google Scholar 

  • Brown RJ, Bonadonna C, Durant AJ (2012) A review of volcanic ash aggregation. Phys Chem Earth A B C 45–46:65–78. doi:10.1016/j.pce.2011.11.001

    Article  Google Scholar 

  • Bursik MI, Sparks RSJ, Gilbert JS, Carey SN (1992) Sedimentation of tephra by volcanic plumes: I. Theory and its comparison with a study of the Fogo A Plinian deposit, Sao Miguel (Azores). Bull Volcanol 54(4):329–344. doi:10.1007/BF00301486

    Article  Google Scholar 

  • Carey SN (1997) Influence of convective sedimentation on the formation of widespread tephra fall layers in the deep sea. Geology 25(9):839–842. doi:10.1130/0091-7613(1997)025<0839:IOCSOT>2.3.CO;2

    Article  Google Scholar 

  • Carey SN, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St. Helens volcano. J Geophys Res 87(B8):7061–7072. doi:10.1029/JB087iB08p07061

    Article  Google Scholar 

  • Carey SN, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48(2–3):109–125. doi:10.1007/BF01046546

    Article  Google Scholar 

  • Casadevall TJ (1994) The 1989–1990 eruption of Redoubt volcano, Alaska: impacts on aircraft operations. J Volcanol Geotherm Res 62(1–4):301–316. doi:10.1016/0377-0273(94)90038-8

    Article  Google Scholar 

  • Crawfurd J (1856) A descriptive dictionary of the Indian islands and adjacent countries. Bradbury and Evans, London

    Google Scholar 

  • Durant AJ, Rose WI, Sarna-Wojcicki AM, Carey SN, Volentik ACM (2009) Hydrometeor-enhanced tephra sedimentation: constraints from the 18 May 1980 eruption of Mount St. Helens. J Geophys Res 114:B03204

    Article  Google Scholar 

  • East India Company (1816) The Asiatic journal and monthly miscellany, vol 2. Allen & Co, London

    Google Scholar 

  • ESRI (2009) World shaded relief. http://services.arcgisonline.com/ArcGIS/rest/services/World_Shaded_Relief/MapServer. Accessed 6 September 2010

  • Fisher RV (1965) Settling velocity of glass shards. Deep-Sea Res 12:345–353. doi:10.1016/0011-7471(65)90006-9

    Google Scholar 

  • Gilbert JS, Lane SJ (1994) The origin of accretionary lapilli. Bull Volcanol 56:398–411

    Google Scholar 

  • Horwell CJ (2007) Grain-size analysis of volcanic ash for the rapid assessment of respiratory health hazard. J Environ Monit 9:1107–1115. doi:10.1039/b710583p

    Article  Google Scholar 

  • Hubbard AH (1815) Java Government Gazette No.169, May 20, 1815. Hubbard AH, Batavia

  • Kunii D, Levenspiel O (1969) Fluidization engineering. Wiley, New York

    Google Scholar 

  • Manville V, Wilson CJN (2004) Vertical density currents: a review of their potential role in the deposition and interpretation of deep-sea ash layers. J Geol Soc Lond 161:947–958. doi:10.1144/0016-764903-067

    Article  Google Scholar 

  • Morton BR, Taylor G, Turner JS (1956) Turbulent gravitational convection from maintained and instantaneous sources. Proc Roy Soc Lond A 234:1–23. doi:10.1098/rspa.1956.0011

    Article  Google Scholar 

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87(C2):1231–1238. doi:10.1029/JC087iC02p01231

    Article  Google Scholar 

  • Raffles TS (1817) The history of Java. Black, Parbury and Allen, London

    Google Scholar 

  • Raffles S (1835) Memoir of the life and public services of Sir Thomas Stamford Raffles. James Duncan, London

    Google Scholar 

  • Rose WI, Chesner CA (1987) Dispersal of ash in the great Toba eruption, 75 ka. Geology 15(10):913–917. doi:10.1130/0091-7613(1987)15<913:DOAITG>2.0.CO;2

    Article  Google Scholar 

  • Rose WI, Durant AJ (2009) Fine ash content of explosive eruptions. J Volcanol Geotherm Res 186(1–2):32–39. doi:10.1016/j.jvolgeores.2009.01.010

    Article  Google Scholar 

  • Ross JT (1816) Narrative of the effects of the eruption from the Tomboro Mountain, in the island of Sumbawa, on the 11th and 12th April 1815. In: Verhandelingen van het Bataviaasch Genootschap, der Kunsten en Wetenschappen. Hubbard, Batavia

  • Scasso RA, Corbella H, Tiberi P (1994) Sedimentological analysis of the tephra from the 12–15 August 1991 eruption of Hudson volcano. Bull Volcanol 56:121–132. doi:10.1007/BF00304107

    Google Scholar 

  • Schumacher R (1994) A reappraisal of Mount St. Helens' ash clusters—depositional model from experimental observation. J Volcanol Geotherm Res 59(3):253–260. doi:10.1016/0377-0273(94)90099-X

    Article  Google Scholar 

  • Self S, Gertisser R, Thordarson T, Rampino MR, Wolff JA (2004) Magma volume, volatile emissions, and stratospheric aerosols from the 1815 eruption of Tambora. Geophys Res Lett 31(L20608). doi:10.1029/2004GL020925

  • Sigurdsson H, Carey SN (1989) Plinian and co-ignimbrite tephra fall from the 1815 eruption of Tambora volcano. Bull Volcanol 51(4):243–270. doi:10.1007/BF01073515

    Article  Google Scholar 

  • Sigurdsson H, Sparks RSJ, Carey SN, Huang TC (1980) Volcanogenic sedimentation in the Lesser Antilles Arc. J Geol 88(5):523–540

    Article  Google Scholar 

  • Smayda TJ (1971) Normal and accelerated sinking of phytoplankton in the sea. Mar Geol 11:105–122. doi:10.1016/0025-3227(71)90070-3

    Article  Google Scholar 

  • Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48(1):3–15. doi:10.1007/BF01073509

    Article  Google Scholar 

  • Sparks RSJ, Carey SN, Sigurdsson H (1991) Sedimentation from gravity currents generated by turbulent plumes. Sedimentology 38(5):839–856. doi:10.1111/j.1365-3091.1991.tb01875.x

    Article  Google Scholar 

  • Sparks RSJ, Bursik MI, Ablay GJ, Thomas RME, Carey SN (1992) Sedimentation of tephra by volcanic plumes. Part 2: controls on thickness and grain-size variations of tephra fall deposits. Bull Volcanol 54(8):685–695. doi:10.1007/BF00430779

    Article  Google Scholar 

  • Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. Wiley, London

    Google Scholar 

  • Stewart GA (1820) Description of a volcanic eruption in the island of Sumbawa. Trans Lit Soc Bombay 2:109–114

    Google Scholar 

  • Stothers RB (1984) The great Tambora eruption in 1815 and its aftermath. Science 224:1191–1198. doi:10.1126/science.224.4654.1191

    Article  Google Scholar 

  • Watkins ND, Sparks RSJ, Sigurdsson H, Huang TC, Federman A, Carey SN, Ninkovich D (1978) Volume and extent of the Minoan tephra from Santorini volcano: new evidence from deep-sea sediment cores. Nature 271:122–126. doi:10.1038/271122a0

    Article  Google Scholar 

  • Wiesner MG, Wetzel A, Catane SG, Listanco EL, Mirabueno HT (2004) Grain size, areal thickness distribution and controls on sedimentation of the 1991 Mount Pinatubo tephra layer in the South China Sea. Bull Volcanol 66(3):226–242. doi:10.1007/s00445-003-0306-x

    Article  Google Scholar 

  • Woods AW, Wohletz K (1991) Dimensions and dynamics of co-ignimbrite eruption columns. Nature 350:225–227. doi:10.1038/350225a0

    Article  Google Scholar 

  • Zen M, Ganie B (1992) Tambora 1815 eruption. In: Degens ET, Wong HK, Zen MT (eds) The sea off Mount Tambora. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg Heft 70, Hamburg, pp 173–185

  • Zollinger H (1855) Besteigung des Vulkanes Tambora auf der Insel Sumbawa und Schilderung der Erupzion desselben im Jahr 1815. J. Wurster and Co, Winterthur

    Google Scholar 

Download references

Acknowledgments

This research was supported by the AXA Research Fund. We wish to thank NIOZ for providing the deep-sea cores and Charlie Mandeville for providing samples. We also acknowledge technical support and assistance from Rineke Gieles at NIOZ, as well as Rene Olsen, Danielle Cares and Rebecca Robinson at GSO Rhode Island. RSJS acknowledges a European Research Council Advanced grant. We thank Sarah Fagents, David Pyle and an anonymous reviewer for providing us with helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jessica Kandlbauer.

Additional information

Editorial responsibility: S. A. Fagents

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandlbauer, J., Carey, S.N. & Sparks, R.S.J. The 1815 Tambora ash fall: implications for transport and deposition of distal ash on land and in the deep sea. Bull Volcanol 75, 708 (2013). https://doi.org/10.1007/s00445-013-0708-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-013-0708-3

Keywords

Navigation