Skip to main content
Log in

Unraveling the solidification path of a pahoehoe “cicirara” lava from Mount Etna volcano

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The solidified surface of a lava flow reflects the viscosity of its molten fraction and the crystal content during flow; crystal-poor basaltic lavas produce pahoehoe fields, whereas crystal-rich ones solidify with aa carapaces. At Mount Etna, volcano aa morphologies are very common, whereas pahoehoe lavas are rare. The latter are locally named “cicirara” due to the presence of centimeter-sized plagioclase phenocrysts much more abundant than in aa lavas. The phenocryst content of “cicirara” lavas contrasts with the low viscosity generally associated with pahoehoe morphology. Therefore, to reconcile the discrepancy between textural and volcanic observations, we have studied the most primitive pahoehoe “cicirara” lava sampled until now. Two samples at 0.5 and 1 m from the bottom of the 2-m thick lava flow were investigated on the basis of their mineral compositional variations and textural features, i.e., size frequency and crystal size distribution (CSD). Results coupled with rheological models indicate that only large phenocrysts of plagioclase (>1 mm) and clinopyroxene have grown before eruption. Thermobarometric models and petrological computations based on the composition of plagioclase and clinopyroxene phenocryst cores highlight that only a small amount (10–15 vol.%) of crystals equilibrated at 12 km of depth. Cumulative size frequency and CSD data also indicate that plagioclase and clinopyroxene phenocryst rims grew heterogeneously and coalesced around their cores at depths <1 km, before eruption. In this view, the “cicirara” lava was erupted with a low crystalline content that favoured the formation of its pahoehoe surface; however, crystals with a size <1 mm (~75 vol.%) solidified at post-eruptive conditions. Our findings underline that the emplacement of high-viscosity aa or low-viscosity pahoehoe lavas is driven by the degree of undercooling imposed by the volatile exsolution rate in the shallowest portion of the Etnean plumbing system. A slow magma ascent rate promotes significant intratelluric degassing and widespread nucleation; consequently, the viscosity of the suspension significantly increases leading to an aa morphology. In contrast, pahoehoe “cicirara” lavas are associated with a rapid rise to the surface of poorly degassed, undercooled magmas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Armienti P (2008) Decryption of igneous rock textures: crystal size distributions tools. In: Putirka KD, Tepley FJ (eds) Minerals, inclusions and volcanic processes, vol. 69, Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, pp 623–649

    Google Scholar 

  • Armienti P, Barberi F, Innocenti F, Pompilio M, Romano R, Villari L (1984) Compositional variation in the 1983 and other recent Etnean lavas: insights on the shallow feeding system. Bull Volcanol 47:995–1007

    Article  Google Scholar 

  • Armienti P, Pareschi MT, Pompilio M, Innocenti F (1994a) Effects of magma storage and ascent on the kinetics of crystal growth: the case of the 1991–1993 Mt. Etna eruption. Contrib Mineral Petrol 115:402–414

    Article  Google Scholar 

  • Armienti P, Clocchiatti R, D’Orazio M, Innocenti F, Petrini R, Pompilio M, Tonarini S, Villari L (1994b) The long-standing 1991–1993 Mount Etna eruption: petrography and geochemistry of lavas. Acta Vulcanol 4:15–28

    Google Scholar 

  • Armienti P, Pareschi MT, Pompilio M (1997) Lava textures and time scales of magma storage at Mt. Etna. Acta Vulcanol 9:1–5

    Google Scholar 

  • Bonaccorso A, Currenti G, Del Negro C, Boschi E (2010) Dike deflection modelling for inferring magma pressure and withdrawal, with application to Etna 2001 case. Earth Planet Sci Lett 293(1–2):121–129

    Article  Google Scholar 

  • Branca S, Coltelli M, Groppelli G, Lentini F (2011) Geological map of Etna volcano, 1:50000 scale. Ital J Geosci 130:265–291

    Google Scholar 

  • Cashman KV, Kauahikaua JP, Thornber C (1999) Cooling and crystallization of lava in open channels, and the transition of pahoehoe lava to a′a. Bull Volcanol 61:306–323

    Article  Google Scholar 

  • Chester DK, Duncan AM, Guest JE, Kilburn CJR (1985) Mount Etna: the anatomy of a volcano. Chapman and Hall, London, pp 65–123

    Book  Google Scholar 

  • Collins SJ, Pyle DM, Maclennan J (2009) Melt inclusions track pre-eruption storage and dehydratation of magmas at Etna. Geology 6:571–574

    Article  Google Scholar 

  • Corsaro RA, Pompilio M (2004) Dynamics of magmas at Mount Etna. In: Bonaccorso A, Calvari S, Coltelli M, Del Negro C, Falsaperla S (eds) Mt. Etna volcano laboratory, vol. 143. AGU Geophysical Monograph Series, Washington, pp 91–110

    Chapter  Google Scholar 

  • Corsaro RA, Metrich N, Allard P, Andronico D, Miraglia L, Fourmentraux C (2009) The 1974 flank eruption of Mount Etna: an archetype for deep dike-fed eruptions at basaltic volcanoes and a milestones in Etna’s recent history. J Geophys Res B07204. doi:10.1029/2008JB006013

  • Couch S, Sparks RSJ, Carroll MR (2003) The kinetics of degassing-induced crystallisation at Soufriere Hills volcano, Montserrat. J Petrol 44:1477–1502

    Article  Google Scholar 

  • Crisp J, Cashman CK, Bonini JA, Hougen SB, Pieri DC (1994) Crystallization history of the 1984 Mauna Loa lava flow. J Geophys Res 99:7177–7198

    Article  Google Scholar 

  • Del Gaudio P, Mollo S, Ventura G, Iezzi G, Taddeucci J, Cavallo A (2010) Cooling rate-induced differentiation in anydrous and hydrous basalts at 500 MPa: implications for the storage and transport of magmas in dikes. Chem Geol 270:164–178

    Article  Google Scholar 

  • Fazzetta G, Romano R (1984) The 1983 Etna eruption: event chronology and morphological evolution of the lava flow. Bull Volcanol 47:1079–1096

    Article  Google Scholar 

  • Ferlito C, Lanzafame G (2010) The role of supercritical fluids in the potassium enrichment of magmas at Mount Etna volcano (Italy). Lithos 119:642–650

    Article  Google Scholar 

  • Ferlito C, Viccaro M, Nicotra E, Cristofolini R (2011) Regimes of magma recharge on the eruptive behaviour during the period 2001–2005 at Mt. Etna volcano. Bull Volcanol 74(2):533–543

    Article  Google Scholar 

  • France L, Koepke J, Ildefonse B, Cichy SB, Deschamps F (2010) Hydrous partial melting in the sheeted dike complex at fast spreading ridges: experimental and natural observations. Contrib Mineral Petrol 5:683–704

    Article  Google Scholar 

  • Ghiorso MS, Sack RO (1995) Chemical mass-transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquidus-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib Mineral Petrol 119:197–212

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–134

    Article  Google Scholar 

  • Guest JE, Wood C, Greeley R (1984) Lava tubes, terraces and megatumuli on the 1614–24 pahoehoe lava flowfield, Mount Etna, Sicily. Bull Volcanol 47:635–648

    Article  Google Scholar 

  • Guest JE, Duncan AM, Stofan ER, Anderson SW (2012) Effect of slope on the development of pahohehoe flow fields: evidence from Mount Etna. J Volcanol Geotherm Res 219–220:52–62

    Article  Google Scholar 

  • Hammer JE (2008) Experimental studies of the kinetics and energetics of magma crystallization. In: Putirka KD, Tepley FJ (eds) Minerals, inclusions and volcanic processes, vol. 69, Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, pp 9–59

    Google Scholar 

  • Heap MJ, Mollo S, Vinciguerra S, Lavallée Y, Hess KU, Dingwell DB, Baud P, Iezzi G (2012) Thermal weakening of the carbonate basement under Mt. Etna volcano (Italy): implications for volcano instability. J Volcanol Geotherm Res 250:42–60. doi:10.1016/j.jvolgeores.2012.10.004

    Article  Google Scholar 

  • Higgins MD (2000) Measurement of crystal size distributions. Am Mineral 85:1105–1116

    Google Scholar 

  • Higgins MD (2006) Quantitative textural measurements in igneous and metamorphic petrology. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hon K, Gansecki C, Kauahikaua J (2003) The transition from a′a′ to pahoheoe crust on flows emplaced during the Pu’u O’o-Kupaianaha eruption. US Geol Surv Prof Pap 1676:89–104

    Google Scholar 

  • Hoover SR, Cashman KV, Manga M (2001) The yield strength of subliquidus basalts: experimental results. J Volcanol Geotherm Res 107:1–18

    Article  Google Scholar 

  • Hughes JW, Guest JE, Duncan AM (1990) Changing styles of effusive eruption on Mount Etna since AD 1600. In: Ryan MP (ed) Magma transport and storage. Wiley, London, pp 385–405

    Google Scholar 

  • Iezzi G, Ventura G (2005) The kinematics of lava flows inferred from the structural analysis of enclaves: a review. In: Manga M, Ventura G (eds) Kinematics and dynamics of lava flows. Geological Society of America, Boulder, pp 15–28

    Chapter  Google Scholar 

  • Iezzi G, Mollo S, Ventura G, Cavallo A, Romano C (2008) Experimental solidification of anhydrous latitic and trachytic melts at different cooling rates: the role of nucleation kinetics. Chem Geol 253:91–101

    Article  Google Scholar 

  • Iezzi G, Mollo S, Ventura G (2009) Solidification behaviour of natural silicate melts and volcanological implications. In: Lewis N, Moretti A (eds) Volcanoes: formation, eruptions and modeling. Nova publishers, New York, pp 127–151

    Google Scholar 

  • Iezzi G, Mollo S, Torresi G, Ventura G, Cavallo A, Scarlato P (2011) Experimental solidification of an andesitic melt by cooling. Chem Geol 283(3–4):261–273

    Article  Google Scholar 

  • Kilburn CRJ (2004) Fracturing as a quantitative indicator of lava flow dynamics. J Volcanol Geotherm Res 132:209–224

    Article  Google Scholar 

  • Kilburn CRJ, Guest JE (1993) Aa lavas of Mount Etna, Sicily. In: Kilburn CRJ (ed) Active lavas. UCL Press, London, pp 73–106

    Google Scholar 

  • Kress VC, Carmichael ISE (1991) The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib Mineral Petrol 108:82–92

    Article  Google Scholar 

  • Kuritani T (1999) Phenocryst crystallization during ascent of alkali basalt magma at Rishiri Volcano, northern Japan. J Volcanol Geotherm Res 88:77–97

    Article  Google Scholar 

  • Lange RA, Frey HM, Hector J (2009) A thermodynamic model for the plagioclase-liquid hygrometer/thermometer. Am Mineral 94:494–506

    Article  Google Scholar 

  • Metrich N, Rutherford MJ (1998) Low pressure crystallization paths of H2O-saturated basaltic-hawaitic melts from Mt Etna: implications for open-system degassing of basaltic volcanoes. Geochim Cosmochim Acta 62:1195–1205

    Article  Google Scholar 

  • Mollo S, Del Gaudio P, Ventura G, Iezzi G, Scarlato P (2010) Dependence of clinopyroxene composition on cooling rate in basaltic magmas: implications for thermobarometry. Lithos 118:302–312

    Article  Google Scholar 

  • Mollo S, Putirka K, Iezzi G, Del Gaudio P, Scarlato P (2011a) Plagioclase–melt (dis)equilibrium due to cooling dynamics: implications for thermometry, barometry and hygrometry. Lithos 125:221–235

    Article  Google Scholar 

  • Mollo S, Lanzafame G, Masotta M, Iezzi G, Ferlito C, Scarlato P (2011b) Cooling history of a dike as revealed by mineral chemistry: a case study from Mt. Etna volcano. Chem Geol 288:39–52

    Article  Google Scholar 

  • Mollo S, Vinciguerra S, Iezzi G, Iarocci A, Scarlato P, Heap MJ, Dingwell DB (2011c) Volcanic edifice weakening via devolatilization reactions. Geophys J Int 186:1073–1077. doi:10.1111/j.1365-246X.2011.05097.x

    Article  Google Scholar 

  • Mollo S, Heap MJ, Iezzi G, Hess K-U, Scarlato P, Dingwell DB (2012a) Volcanic edifice weakening via decarbonation: a self-limiting process? Geophys Res Lett 39:L15307. doi:10.1029/2012GL052613,2012

    Article  Google Scholar 

  • Mollo S, Iezzi G, Ventura G, Cavallo A, Scarlato P (2012b) Heterogeneous nucleation mechanisms and formation of metastable phase assemblages induced by different crystalline seeds in a rapidly cooled andesitic melt. J Non-Cryst Solids 358:1624–1628

    Article  Google Scholar 

  • Mollo S, Misiti V, Scarlato P, Soligo M (2012c) The role of cooling rate in the origin of high temperature phases at the chilled margin of magmatic intrusions. Chem Geol. doi:10.1016/j.chemgeo.2012.05.029

  • Mollo S, Scarlato P, Lanzafame G, Ferlito C (2013) Deciphering lava flow post-eruption differentiation processes by means of geochemical and isotopic variations: A case study from Mt. Etna volcano. Lithos 162–163:115–127. doi:10.1016/j.lithos.2012.12.020

  • Morgan DJ, Jerram DA (2006) On estimating crystal shape of crystal size distribution analysis. J Volcanol Geotherm Res 154:1–7

    Article  Google Scholar 

  • Murphy MD, Sparks RSJ, Barclay J, Carroll MR, Brewer TS (2000) Remobilization of andesite magma by intrusion of mafic magma at the Soufriere Hills Volcano, Montserrat, West Indies. J Petrol 41:21–42

    Article  Google Scholar 

  • Nicotra E, Viccaro M (2012) Unusual magma storage conditions at Mt. Etna (Southern Italy) as evidenced by plagioclase megacryst-bearing lavas: implications for the plumbing system geometry and summit caldera collapse. Bull Volcanol 74:795–825. doi:10.1007/s00445-011-0566-9

    Article  Google Scholar 

  • Pupier E, Duchene S, Toplis MJ (2008) Experimental quantification of plagioclase crystal size distribution during cooling of a basaltic liquid. Contrib Mineral Petrol 155:555–570

    Article  Google Scholar 

  • Putirka K (2005) Igneous thermometers and barometers based on plagioclase + liquid equilibria: test of some existing models and new calibrations. Am Mineral 90:336–346

    Article  Google Scholar 

  • Putirka K (2008) Thermometers and barometers for volcanic systems. In: Putirka KD, Tepley F (eds) Minerals, inclusions and volcanic processes, vol. 69, Reviews in mineralogy and geochemistry. Mineralogical Society of America, Chantilly, pp 61–120

    Google Scholar 

  • Saar MO, Manga M, Cashman KV, Fremouw S (2001) Numerical models of the onset of yield strength in crystal-melt suspensions. Earth Planet Sci Lett 187:367–379

    Article  Google Scholar 

  • Sato H (1995) Textural difference between pahoehoe and aa lavas of Izu-Oshima volcano, Japan: an experimental study on population density of plagioclase. J Volcanol Geotherm Res 66:101–113

    Article  Google Scholar 

  • Soule SA, Cashman KV (2005) Shear rate dependence of the pāhoehoe-to-′a′ā transition: Analog experiments. Geology 33:361–364

    Article  Google Scholar 

  • Sparks RSJ, Murphy MD, Lejeune AM, Watts RB, Barclay J, Young SR (2000) Control on the emplacement of the andesite lava dome of the Soufriere Hills volcano, Montserrat by degassing-induced crystallization. Terra Nova 12:14–20

    Article  Google Scholar 

  • Spilliaert N, Allard P, Metrich N, Sobolev AV (2006) Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt feeding the powerful 2002 flank eruption of Mount Etna (Italy). J Geophys Res 111:B04203

    Article  Google Scholar 

  • Tanguy JC (1973) The 1971 Etna eruption: petrography of the lavas. Philos Trans R Soc Lond 274:45–53

    Article  Google Scholar 

  • Tanguy JC, Clocchiati R (1984) The Etnean lavas, 1977–1983: petrology and mineralogy. Bull Volcanol 47:879–894

    Article  Google Scholar 

  • Tanguy JC, Condomines M, Kieffer G (1997) Evolution of the Mount Etna magma: constraints on the present feeding system and eruptive mechanism. J Volcanol Geotherm Res 75:221–250

    Article  Google Scholar 

  • Vona A, Romano C, Dingwell DB, Giordano D (2011) The rheology of crystal-bearing basaltic magmas from Stromboli and Etna. Geochim Cosmochim Acta 75:3214–3236

    Article  Google Scholar 

  • Witham F, Blundy J, Kohn SC, Lesne P, Dixon J, Churakov SV, Botcharnikov R (2012) SolEx: a model for mixed COHSCL-volatile solubilities and exsolved gas compositions in basalt. Comput Geosci 45:87–97

    Article  Google Scholar 

Download references

Acknowledgments

We appreciate the constructive comments of M. Patrick, P. Armienti and M. D. Higgins. This study was supported by the “Fondi Ateneo of the University G. d’Annunzio” and the PRIN project “Experimental determination of the glass-forming ability (GFA), nucleation and crystallization of natural silicate melts” awarded to G. Iezzi. S. Mollo was supported by the ERC Starting Grant No. 259256 GLASS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Iezzi.

Additional information

Editorial responsibility: M.R. Patrick

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lanzafame, G., Mollo, S., Iezzi, G. et al. Unraveling the solidification path of a pahoehoe “cicirara” lava from Mount Etna volcano. Bull Volcanol 75, 703 (2013). https://doi.org/10.1007/s00445-013-0703-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-013-0703-8

Keywords

Navigation