Skip to main content

Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA

Abstract

The physical features and morphologies of collections of lava bodies emplaced during single eruptions (known as flow fields) can be used to understand flood basalt emplacement mechanisms. Characteristics and internal features of lava lobes and whole flow field morphologies result from the forward propagation, radial spread, and cooling of individual lobes and are used as a tool to understand the architecture of extensive flood basalt lavas. The features of three flood basalt flow fields from the Columbia River Basalt Group are presented, including the Palouse Falls flow field, a small (8,890 km2, ∼190 km3) unit by common flood basalt proportions, and visualized in three dimensions. The architecture of the Palouse Falls flow field is compared to the complex Ginkgo and more extensive Sand Hollow flow fields to investigate the degree to which simple emplacement models represent the style, as well as the spatial and temporal developments, of flow fields. Evidence from each flow field supports emplacement by inflation as the predominant mechanism producing thick lobes. Inflation enables existing lobes to transmit lava to form new lobes, thus extending the advance and spread of lava flow fields. Minimum emplacement timescales calculated for each flow field are 19.3 years for Palouse Falls, 8.3 years for Ginkgo, and 16.9 years for Sand Hollow. Simple flow fields can be traced from vent to distal areas and an emplacement sequence visualized, but those with multiple-layered lobes present a degree of complexity that make lava pathways and emplacement sequences more difficult to identify.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Anderson SW, Stofan ER, Smrekar SE, Guest JE, Wood B (1999) Pulsed inflation of pāhoehoe lava flows: implications for flood basalt emplacement. Earth Planet Sci Lett 168:7–18

    Article  Google Scholar 

  • Baksi AK (1989) Reevaluation of the timing and duration of extrusion of the Imnaha, Picture Gorge, and Grande Ronde Basalts, Columbia River basalt group. In: Reidel SP, Hooper PR (eds). Geol Soc Am Special Paper 239:105–112

  • Barry TL, Self S, Kelley SP, Reidel S, Hooper P, Widdowson M (2010) New 40Ar/39Ar dating of the Grande Ronde lavas, Columbia River Basalts, USA: implications for duration of flood basalt eruption episodes. Lithos 118(3–4):213–222

    Article  Google Scholar 

  • Beeson MH, Fecht KR, Reidel SP, Tolan TL (1985) Regional correlations within the Frenchman Springs Member of the Columbia River Basalt Group: new insights into the middle Miocene tectonics of northwest Oregon. Oregon Geol 47(8):87–96

    Google Scholar 

  • Beeson, MH, Tolan, TL, Anderson, JL (1989) The Columbia River Basalt Group in western Oregon; geologic structures and other factors that controlled flow emplacement patterns. In: Reidel SP, Hooper PR (eds) Volcanism and tectonism in the Columbia River Flood-Basalt Province. Geol Soc Am Special Paper 239

  • Bentley RD, Campbell NP (1983) Geologic map of the Yakima quadrangle, Washington. Washington Division of Geology and Earth Resources Geologic Map GM-29, scale 1:62,500

  • Blake S, Bruno BC (2000) Modelling the emplacement of compound lava flows. Earth Planet Sci Lett 184:181–197

    Article  Google Scholar 

  • Bondre NR, Dole G, Phadnis VM, Duraiswami R, Kale VS (2000) Inflated pāhoehoe lavas from the Sangamner area of the western Deccan Volcanic Province. Curr Sci 78(8):1004–1007

    Google Scholar 

  • Bondre NR, Duraiswami RA, Dole G (2004) Morphology and emplacement of flows from the Deccan Volcanic Province, India. Bull Volcanol 66:29–45

    Article  Google Scholar 

  • Bruce PM, Huppert HE (1989) Thermal control of basaltic fissure eruptions. Nature 342:665–667

    Article  Google Scholar 

  • Bruno BC, Taylor GJ, Rowland SK, Baloga SM (1994) Quantifying the effect of rheology on lava-flow margins using fractal geometry. Bull Volcanol 56(3):193–206

    Article  Google Scholar 

  • Bryan SE, Peate I, Peate D, Self S, Jerram D, Mawby M, Marsh J, Miller JA (2010) The largest volcanic eruptions on Earth. Earth Sci Rev 102(3–4):207–229

    Article  Google Scholar 

  • Camp VE, Ross ME, Hanson WE (2003) Genesis of flood basalts and Basin and Range volcanic rocks from Steens Mountain to the Malheur River Gorge, Oregon. Geol Soc Am Bull 115:105–128

    Article  Google Scholar 

  • Carrasco-Nunez G (1997) Lava flow growth inferred from morphometric parameters; a case study of Citlaltepetl Volcano, Mexico. Geol Mag 134(2):151–162

    Article  Google Scholar 

  • Cashman K, Pinkerton H, Stephenson J (1998) Introduction to special section: long lava flows. J Geophys Res 103(B11):27281–27289

    Article  Google Scholar 

  • Chitwood LA (1994) Inflated basaltic lava—examples of processes and landforms from central and southeast Oregon. Oregon Geol 56:11–21

    Google Scholar 

  • Degraff JM, Aydin A (1987) Surface-morphology of columnar joints and its significance to mechanics and direction of joint growth. Geol Soc Am Bull 99(5):605–617

    Article  Google Scholar 

  • Demlie M, Wohnlich S, Wisotzky F, Gizaw B (2007) Groundwater recharge, flow and hydrogeochemical evolution in a complex volcanic aquifer system, central Ethiopia. Hydrogeo J 15:1169–1181

    Article  Google Scholar 

  • Duraiswami RA, Bondre N, Dole G, Phadnis V (2002) Morphology and structure of flow-lobe tumuli from Pune and Dhule areas, western Deccan Volcanic Province. J Geol Soc India 60(1):57–65

    Google Scholar 

  • Duraiswami RA, Dole G, Bondre N (2005) The Songir structure: inflated lava flow or tube? J Geol Soc India 65(3):357–365

    Google Scholar 

  • Grattan J (2005) Pollution and paradigms: lessons from Icelandic volcanism for continental flood basalt studies. Lithos 79(3–4):343–353

    Article  Google Scholar 

  • Greeley R (1982) The style of basaltic volcanism in the eastern Snake River Plain, Idaho. In: Bonnichsen B, Breckenridge RM (eds) Cenozoic geology of Idaho. Idaho Bureau of Mines and Geology Bulletin 26:407–422

  • Greeley R, Fagents SA, Harris RS, Kadel SD, Williams DA, Guest JE (1998) Erosion by flowing lava: field evidence. J Geophys Res 103(B11):27325–27345

    Article  Google Scholar 

  • Guilbaud M-N, Thordarson T, Blake S (2005) Morphology, surface structures, and emplacement of lavas produced by Laki, A.D. 1783–1784. In: Manga M, Ventura G (eds) Kinematics and dynamics of lava flows. Geol Soc Am Special Paper 396:81–102

  • Hartley ME, Thordarson T (2010) Melt segregations in a Columbia River Basalt lava flow: a possible mechanism for the formation of highly evolved mafic magmas. Lithos 112:434–446

    Article  Google Scholar 

  • Heliker C, Swanson D, Takahahshi TJ (2003) The Pu‘u’ O’o-Kupaianaha eruption of Kilauea Volcano Hawaii: the first 20 years. US Geol Surv Prof Paper 1676:206

    Google Scholar 

  • Helz RT, Heliker C, Hon K, Mangan M (2003) Thermal efficiency of lava tubes in the Pu‘u’O’o-Kupaianaha eruption. US Geol Surv Prof Paper 1676:105–120

    Google Scholar 

  • Ho AM (1999) Emplacement of a large lava flow—the Ginkgo flow of the Columbia River Basalt Group. Ph.D. thesis, University of Oregon, Eugene, 188 pp

  • Ho AM, Cashman KV (1997) Temperature constraints on the Ginkgo flow of the Columbia River Basalt Group. Geology 25(5):403–406

    Article  Google Scholar 

  • Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pāhoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Am Bull 106:351–370

    Article  Google Scholar 

  • Hooper PR, Binger GB, Lees KR (2002) Ages of the Steens and Columbia River flood basalts and their relationship to extension-related calc-alkalic volcanism in eastern Oregon. Geol Soc Am Bull 114:43–50

    Article  Google Scholar 

  • Hooper PR, Camp VE, Reidel SP, Ross ME (2007) The origin of the Columbia River flood basalt province: plume versus nonplume models. In: Foulger GR, Jurdy DM (eds) Plates, plumes and planetary processes. Geol Soc Am Special Paper 540

  • Iezzi G, Ventura G (2000) Kinematics of lava flows based on folds analysis. Geophys Res Lett 27(8):1227–1231

    Article  Google Scholar 

  • Jaeger WL, Keszthelyi LP, Skinner JA Jr, Milazzo MP, McEwen AS, Titus TN, Rosiek MR, Galuszka DM, Howington-Kraus E, Kirk RL, the HiRISE Team (2010) Emplacement of the youngest flood lava on Mars: a short, turbulent story. Icarus 205(1):230–243

    Article  Google Scholar 

  • Jay A (2005) Volcanic architecture of the Deccan Traps, Western Maharashtra, India: an integrated chemostratigraphic and palaeomagnetic study. Ph.D. thesis, Department of Earth Sciences, The Open University

  • Jay AE, Mac Niocaill C, Widdowson M, Self S, Turner W (2009) New palaeomagnetic data from the Mahabaleshwar Plateau, Deccan Flood Basalt Province, India: implications for the volcanostratigraphic architecture of continental flood basalt provinces. J Geol Soc 166:13–24

    Article  Google Scholar 

  • Jerram D (2002) Volcanology and facies architecture of flood basalts. In: Menzies MA, Klemperer SL, Ebinger CJ, Baker J (eds) Volcanic rifted margins. Geol Soc Am Special Paper 362:121–135

  • Jerram DA, Mountney NP, Howell JA, Long D, Stollhofen H (2000) Death of a sand sea: an active aeolian erg systematically buried by the Etendeka flood basalts of NW Namibia. J Geol Soc 157:513–516

    Article  Google Scholar 

  • Kent RW, Thomson BA, Skelhorn RR, Kerr AC, Norry MJ, Walsh JN (1998) Emplacement of Hebridean Tertiary flood basalts: evidence from an inflated pāhoehoe lava flow on Mull, Scotland. J Geol Soc 155:599–607

    Article  Google Scholar 

  • Kerr RC (2001) Thermal erosion by laminar lava flows. J Geophys Res 106(B11):26453–26465

    Article  Google Scholar 

  • Keszthelyi LP (2012) Rate of solidification of silicate melts on the Earth, Moon, Mars, and beyond. 43rd Lunar and Planetary Science Conference, LPI Contribution No. 1659, id.2547

  • Keszthelyi L, Denlinger R (1996) The initial cooling of pāhoehoe flow lobes. Bull Volcanol 58(1):5–18

    Article  Google Scholar 

  • Keszthelyi LP, Pieri DC (1993) Emplacement of the 75-km-long Carrizozo lava flow-field, south-central New-Mexico. J Volcanol Geotherm Res 59(1–2):59–75

    Article  Google Scholar 

  • Keszthelyi LP, Self S (1998) Some physical requirements for the emplacement of long basaltic lava flows. J Geophys Res 103(B11):27447–27464

    Article  Google Scholar 

  • Keszthelyi LP, Thordarson T, McEwan A, Haack H, Guilbaud M-N, Self S, Rossi MJ (2004) Icelandic analogs to Martian flood lavas. Geochem Geophys Geosys 5(11):1–32

    Article  Google Scholar 

  • Keszthelyi L, Self S, Thordarson T (2006) Flood lavas on earth, Io and Mars. J Geol Soc 163:253–264

    Article  Google Scholar 

  • Lockwood JP, Williams IS (1978) Lava trees and tree moulds as indicators of lava flow direction. Geol Mag 115:69–74

    Article  Google Scholar 

  • Long PE, Duncan RA (1983) 40Ar/39Ar ages of the Columbia River Basalt from deep boreholes in south-central Washington. EOS Trans AGU 64:90

    Google Scholar 

  • Mackiewicz MC (1978) Lava trees. Earth Sci 31:5–8

    Google Scholar 

  • Martin B (1989) The Roza Member, Columbia River Basalt Group; chemical stratigraphy and flow distribution. Geol Soc Am Special Paper 239:85–104

    Google Scholar 

  • Martin B (1991) Geochemical variations within the Roza Member, Wanapum basalt, Columbia River basalt group: implications for the magmatic processes affecting continental flood basalts. Ph.D. thesis, Department of Geology and Geography, University of Massachusetts, 513 pp

  • Martini F, Hobbs RW, Bean CJ, Single R (2005) A complex 3D volume for sub-basalt imaging. First Break 23:41–51

    Google Scholar 

  • Nelson CE, Jerram DA, Hobbs RW, Terrington R, Kessler H (2011) Reconstructing flood basalt lava flows in 3D using terrestrial laser scanning. Geosphere 7(1):1–10

    Article  Google Scholar 

  • Passey SR, Bell BR (2007) Morphologies and emplacement mechanisms of the lava flows of the Faroe Islands Basalt Group, Faroe Islands, NE Atlantic Ocean. Bull Volcanol 70(2):139–156

    Article  Google Scholar 

  • Petcovic HL, Dufek JD (2005) Modeling magma flow and cooling in dikes: implications for the emplacement of Columbia River flood basalts. J Geophys Res 110:B10201. doi:10.1029/2004JB003432

    Article  Google Scholar 

  • Peterson DW, Swanson D (1974) Observed formation of lava tubes during 1970–1971 at Kilauea volcano, Hawaii. Stud Speleol 2(6):209–222

    Google Scholar 

  • Petford N (2003) Controls on primary porosity and permeability development in igneous rocks In: Petford N, McCaffrey KJW (eds) Hydrocarbons in crystalline rocks. Geol Soc London Spec Pub 214:93–107

  • Philpotts AR, Philpotts DE (2005) Crystal-mush compaction in the Cohassett flood-basalt flow, Hanford, Washington. J Volcanol Geotherm Res 145(3–4):192–206

    Article  Google Scholar 

  • Reidel SP (1998) Emplacement of Columbia River flood basalt. J Geophys Res 103(B11):27393–27410

    Article  Google Scholar 

  • Reidel SP (2005) A lava flow without a source: the Cohassett Flow and its compositional components, sentinel bluffs member, Columbia River Basalt Group. J Geol 113:1–21

    Article  Google Scholar 

  • Reidel SP, Fecht KR (1987) The Huntzinger flow: evidence of surface mixing of the Columbia River Basalt and its petrogenetic implications. Geol Soc Am Bull 98:664–677

    Article  Google Scholar 

  • Reidel SP, Tolan TL (1992) Eruption and emplacement of flood basalt: an example from the large-volume Teepee Butte Member, Columbia River Basalt Group. Geol Soc Am Bull 104:1650–1671

    Article  Google Scholar 

  • Rossi MJ, Gudmundsson A (1996) The morphology and formation of flow-lobe tumuli on Icelandic shield volcanoes. J Volcanol Geotherm Res 72:291–308

    Article  Google Scholar 

  • Ryan MP, Sammis CG (1978) Cyclic fracture mechanisms in cooling basalt. Geol Soc Am Bull 89(9):1295–1308

    Article  Google Scholar 

  • Schaefer CJ, Kattenhorn SA (2004) Characterization and evolution of fractures in low-volume pahoehoe lava flows, eastern Snake River Plain, Idaho. GSA Bull 116(3–4):322–336

    Article  Google Scholar 

  • Self S, Thordarson T, Keszthelyi LP, Walker GPL, Hon K, Murphy MT, Long P, Finnemore S (1996) A new model for the emplacement of Columbia River basalts as large, inflated pāhoehoe lava flow fields. Geophys Res Lett 23(19):2689–2696

    Article  Google Scholar 

  • Self S, Thordarson T, Keszthelyi LP (1997) Emplacement of continental flood basalt lava flows. Large igneous provinces: continental, oceanic and planetary flood volcanism. Am Geophys Union 100:381–410

    Google Scholar 

  • Self S, Keszthelyi LP, Thordarson T (1998) The importance of Pāhoehoe. Ann Rev Earth Planet Sci 26:81–110

    Article  Google Scholar 

  • Self S, Keszthelyi LP, Thordarson T (2000) Discussion of: Pulsed inflation of pāhoehoe lava flows: implications for flood basalt emplacement, by Anderson SW, Stofan ER, Smrekar ER, Guest JE, Wood B [Earth Planet Sci Lett 168 (1999) 7–18]. Earth Planet Sci Lett 179:421–423

    Article  Google Scholar 

  • Shaw HR, Swanson DA (1970) Eruption and flow rates of flood basalts. Proceedings of the Second Columbia River Basalt Symposium, Cheney, Washington, pp 271–299

  • Single RT, Jerram D (2004) The 3-D facies architecture of flood basalt provinces and their internal heterogeneity: examples from the Palaeogene Skye Lava Field. J Geol Soc 161:911–926

    Article  Google Scholar 

  • Solana MC, Kilburn CRJ, Badiola ER, Aparicio A (2004) Fast emplacement of extensive pāhoehoe flow-fields: the case of the 1736 flows from Montana de las Nueces, Lanzarote. Jo Volcanol Geotherm Res 132(2–3):189–207

    Article  Google Scholar 

  • Soule SA, Cashman KV, Kauahikaua JP (2004) Examining flow emplacement through the surface morphology of three rapidly emplaced, solidified lava flows, Kīlauea Volcano, Hawai’i. Bull Volcanol 66:1–14

    Article  Google Scholar 

  • Stephenson PJ, Burch-Johnston AT, Stanton D, Whitehead PW (1998) Three long lava flows in north Queensland. J Geophys Res 103(B11):27359–27370

    Article  Google Scholar 

  • Swanson DA, Wright TI, Helz RT (1975) Linear vent systems and estimated rates of magma production and eruption for the Yakima Basalt on the Columbia Plateau. Am J Sci 275:877–905

    Article  Google Scholar 

  • Swanson DA, Wright TL, Hooper PR, Bentley RD (1979) Revisions in stratigraphic nomenclature of the Columbia River Basalt Group. US Geol Surv Bull 1457-G:G1–G59

  • Thordarson T (1995) Volatile release and atmospheric effects of basaltic fissure eruptions. Ph.D. thesis, University of Hawaii, Manoa, Honolulu, 580 pp

  • Thordarson T, Self S (1998) The Roza Member, Columbia River Basalt Group: a gigantic pāhoehoe lava flow field formed by endogenous processes? J Geophys Res 103(B11):27411–27445

    Article  Google Scholar 

  • Tolan TL (2002) Some geologic factors that influence groundwater availability in the Columbia River Basalt Group (CRBG) aquifer system in the Willamette Valley (WV) Oregon. GSA, Cordilleran Section 98th Annual Meeting, 13–15 May 2002, abstract 33932

  • Tolan TL, Reidel SP, Beeson MH, Anderson JL, Fecht KR, Swanson DA (1989) Revisions to the estimated of the areal extent and volume of the Columbia River Basalt Group. Geol Soc Am Spec Pap 239:1–20

    Google Scholar 

  • Tolan TL, Martin BS, Reidel SP, Kauffman JD, Garwood DL, Anderson JL (2009) Stratigraphy and tectonics of the central and eastern portions of the Columbia River Flood-Basalt Province: an overview of our current state of knowledge In: O’Connor J, Dorsey R, Madin I (eds) Volcanoes to vineyards: geologic field trips through the dynamic landscape of the Pacific Northwest. GSA Field Guides 15:645–672

  • Vye CL (2009) Flow field formation and compositional variations of flood basalt eruptions. Ph.D. thesis, The Open University

  • Waichel BL, de Lima EF, Lubachesky R, Sommer CA (2006) Pāhoehoe flows from the central Parana Continental Flood Basalts. Bull Volcanol 68(7–8):599–610

    Article  Google Scholar 

  • Walker GPL (1971) Compound and simple lava flows and flood basalts. Bull Volcanol 35(3):579–590

    Article  Google Scholar 

  • Walker GPL (1991) Structure, and origin by injection of lava under surface crust, of tumuli, “lava rises”, “lava-rise pits”, and “lava-inflation clefts” in Hawaii. Bull Volcanol 53:546–558

    Article  Google Scholar 

  • Walker GPL (1996) Morphometric study of pāhoehoe lava flows. Chapman Conference on Long Lava Flows; Long Lava Flows: Conference Abstracts; Contributions of the Economic Geology Research Unit, EGRU Contribution 56; Department of Earth Sciences, James Cook University of North Queensland, Townsville, Australia

  • Wignall PB, Sun Y, Bond DPG, Izon G, Newton RJ, Védrine S, Widdowson M, Ali JR, Lai X, Jiang H, Cope H, Bottrell SH (2009) Volcanism, mass extinction and carbon isotope fluctuations in the middle Permian of China. Science 324(5931):1179–1182

    Article  Google Scholar 

  • Wilson L, Head JW (1981) Ascent and eruption of basaltic magma on the Earth and Moon. J Geophys Res 86:2971–3001

    Article  Google Scholar 

Download references

Acknowledgments

S. Self and T. Barry were funded by NERC grant NER/A/S/2003/00444. C. Vye-Brown acknowledges the studentship funding from The Open University and fieldwork funding from the Daniel Pidgeon Award (Geological Society of London), the Mineralogical Society, and the Peter Francis Bursary Fund. C. Vye-Brown publishes with permission of the Executive Director of the British Geological Survey (Natural Environment Research Council). Scott Bryan and Magadalena Oryaëlle Chevrel are thanked for their constructive reviews which resulted in improvements to this paper. The authors would also like to thank Steve Reidel and Rich Brown for useful discussions on an early version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Vye-Brown.

Additional information

Editorial responsibility: D.B. Dingwell

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Features of flow fields and reference localities for all logs. (XLSX 12 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vye-Brown, C., Self, S. & Barry, T.L. Architecture and emplacement of flood basalt flow fields: case studies from the Columbia River Basalt Group, NW USA. Bull Volcanol 75, 697 (2013). https://doi.org/10.1007/s00445-013-0697-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-013-0697-2

Keywords

  • Columbia River flood basalts
  • Lava emplacement
  • Lava inflation model
  • Basalt architecture