Bulletin of Volcanology

, 75:683 | Cite as

Biogeochemical processes involving dissolved CO2 and CH4 at Albano, Averno, and Monticchio meromictic volcanic lakes (Central–Southern Italy)

  • Jacopo Cabassi
  • Franco Tassi
  • Orlando Vaselli
  • Jens Fiebig
  • Matteo Nocentini
  • Francesco Capecchiacci
  • Dmitri Rouwet
  • Gabriele Bicocchi
Research Article

Abstract

This paper focuses on the chemical and isotopic features of dissolved gases (CH4 and CO2) from four meromictic lakes hosted in volcanic systems of Central–Southern Italy: Lake Albano (Alban Hills), Lake Averno (Phlegrean Fields), and Monticchio Grande and Piccolo lakes (Mt. Vulture). Deep waters in these lakes are characterized by the presence of a significant reservoir of extra-atmospheric dissolved gases mainly consisting of CH4 and CO2. The δ13C-CH4 and δD-CH4 values of dissolved gas samples from the maximum depths of the investigated lakes (from −66.8 to −55.6 ‰ V-PDB and from −279 to −195 ‰ V-SMOW, respectively) suggest that CH4 is mainly produced by microbial activity. The δ13C-CO2 values of Lake Grande, Lake Piccolo, and Lake Albano (ranging from −5.8 to −0.4 ‰ V-PDB) indicate a significant CO2 contribution from sublacustrine vents originating from (1) mantle degassing and (2) thermometamorphic reactions involving limestone, i.e., the same CO2 source feeding the regional thermal and cold CO2-rich fluid emissions. In contrast, the relatively low δ13C-CO2 values (from −13.4 to −8.2 ‰ V-PDB) of Lake Averno indicate a prevalent organic CO2. Chemical and isotopic compositions of dissolved CO2 and CH4 at different depths are mainly depending on (1) CO2 inputs from external sources (hydrothermal and/or anthropogenic); (2) CO2–CH4 isotopic exchange; and (3) methanogenic and methanotrophic activity. In the epilimnion, vertical water mixing, free oxygen availability, and photosynthesis cause the dramatic decrease of both CO2 and CH4 concentrations. In the hypolimnion, where the δ13C-CO2 values progressively increase with depth and the δ13C-CH4 values show an opposite trend, biogenic CO2 production from CH4 using different electron donor species, such as sulfate, tend to counteract the methanogenesis process whose efficiency achieves its climax at the water–bottom sediment interface. Theoretical values, calculated on the basis of δ13C-CO2 values, and measured δ13CTDIC values are not consistent, indicating that CO2 and the main carbon-bearing ion species (HCO3) are not in isotopic equilibrium, likely due to the fast kinetics of biochemical processes involving both CO2 and CH4. This study demonstrates that the vertical patterns of the CO2/CH4 ratio and of δ13C-CO2 and δ13C-CH4 are to be regarded as promising tools to detect perturbations, related to different causes, such as changes in the CO2 input from sublacustrine springs, that may affect aerobic and anaerobic layers of meromictic volcanic lakes.

Keywords

Volcanic lakes Lake stratification Dissolved gases Italy 

References

  1. Ahlgren I, Sörensson F, Waara T, Vrede K (1994) Nitrogen budgets in relation to microbial transformations in lakes. Ambio 23(6):367–377Google Scholar
  2. Anzidei M, Esposito A, De Giosa F (2006) The dark side of the Albano crater lake. Ann Geophys 49:1275–1287Google Scholar
  3. Anzidei M, Carapezza ML, Esposito A, Giordano G, Lelli M, Tarchini L (2008) The Albano Maar Lake high resolution bathymetry and dissolved CO2 budget (Colli Albani volcano, Italy): constrains to hazard evaluation. J Volcanol Geotherm Res 171:258–268CrossRefGoogle Scholar
  4. Aragno M, Schlegel HG (1981) The hydrogen-oxidizing bacteria. In: Starr MP, Stolp H, Trüper HG, Ballows A, Schlegel HG (eds) The prokaryotes. a handbook of habitats, isolation and identification of bacteria, vol 1. Springer, BerlinGoogle Scholar
  5. Bade DL, Carpenter SR, Cole JJ, Hanson PC, Hesslein RH (2004) Controls of δ13CDIC in lakes: geochemistry, lake metabolism and morphometry. Limnol Oceanogr 49:1160–1172CrossRefGoogle Scholar
  6. Badrudin M (1994) Kelut volcano monitoring: hazards, mitigation and changes in water chemistry prior to the 1990 eruption. Geochem J 28:233–241CrossRefGoogle Scholar
  7. Balistrieri LS, Murray JW, Paul B (1992) The cycling of iron and manganese in the water column of Lake Sammamish, Washington. Limnol Oceanogr 37:510–528CrossRefGoogle Scholar
  8. Barker JF, Fritz P (1981) Carbon isotope fractionation during microbial methane oxidation. Nature 293:289–291CrossRefGoogle Scholar
  9. Beccaluva L, Coltorti M, Di Girolamo P, Melluso L, Milani L, Morra V, Siena F (2002) Petrogenesis and evolution of Mt Vulture alkaline volcanism (Southern Italy). Miner Petrol 74:277–297CrossRefGoogle Scholar
  10. Berner EK, Berner RA (1987) Global water cycle: geochemistry and environment Prentice-Hall, Englewood Cliffs, 397 ppGoogle Scholar
  11. Bianchi L, Mannelli F, Viti C, Adessi A, De Philippis R (2010) Hydrogen-producing purple non-sulfur bacteria isolated from the trophic lake Averno. Int J Hydr En 35:12213–12223CrossRefGoogle Scholar
  12. Blong RJ (1984) Volcanic hazard: a sourcebook of the effects of eruptions. Academic, Orlando, p 424Google Scholar
  13. Bowien B, Schlegel HG (1981) Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Ann Rev Microbiol 35:405–452CrossRefGoogle Scholar
  14. Brantley SL, Agustsdottir AM, Rowe GL (1993) Crater lakes reveal volcanic heat and volatile fluxes. Geol Soc Am 3:175–178Google Scholar
  15. Brown G, Rymer H, Dowden J, Kapadia P, Stevenson D, Barquero J, Morales LD (1989) Energy budget analysis for Poás crater lake: implications for predicting volcanic activity. Nature 339:370–373CrossRefGoogle Scholar
  16. Brune A, Frenzel P, Cypionka H (2000) Life at the oxic–anoxic interface: microbial activities and adaptation. FEMS Microbiol Rev 24(5):691–710Google Scholar
  17. Buresh RJ, Patrick WH (1981) Nitrate reduction to ammonium and organic nitrogen in an estuarine sediment. Soil Biol Biochem 13:279–283CrossRefGoogle Scholar
  18. Calcagnile G, Panza GF (1981) The main characteristics of the lithosphere–asthenosphere system in Italy and surrounding regions. Pure Appl Geophys 19:865–879CrossRefGoogle Scholar
  19. Caliro S, Chiodini G, Moretti R, Avino R, Granieri D, Russo M, Fiebig J (2007) The origin of the fumaroles of La Solfatara (Campi Flegrei, South Italy). Geochim Cosmochim Acta 71:3040–3055CrossRefGoogle Scholar
  20. Caliro S, Chiodini G, Izzo G, Minopoli C, Signorini A, Avino R, Granieri D (2008) Geochemical and biochemical evidence of lake overturn and fish kill at Lake Averno, Italy. J Volcanol Geotherm Res 178:305–316CrossRefGoogle Scholar
  21. Caracausi A, Nuccio PM, Favara R, Nicolosi M, Paternoster M (2009) Gas hazard assessment at the Monticchio crater lakes of Mt Vulture, a volcano in Southern Italy. Terra Nova 21:83–87CrossRefGoogle Scholar
  22. Carapezza ML, Tarchini L (2007) Accidental gas emission from shallow pressurized aquifers at Alban Hills volcano (Rome, Italy): geochemical evidence of magmatic degassing? J Volcanol Geotherm Res 165:5–16CrossRefGoogle Scholar
  23. Carapezza ML, Lelli M, Tarchini L (2008) Geochemistry of the Albano and Nemi crater lakes in the volcanic district of Alban Hills (Rome, Italy). J Volcanol Geotherm Res 178:297–304CrossRefGoogle Scholar
  24. Carapezza ML, Lelli M, Tarchini L (2010) Geochemistry of the Albano crater lake. In: Funiciello R, Giordano G (eds) The Colli Albani volcano. Special Publications of IAVCEI, 3. Geological Society of London, London, pp 107–139Google Scholar
  25. Carapezza ML, Barberi F, Ranaldi M, Ricci T, Tarchini L, Barrancos J, Fischer C, Granieri D, Lucchetti C, Melian G, Perez N, Tuccimei P, Vogel A, Weber K (2012) Hazardous gas emissions from the flanks of the quiescent Colli Albani volcano (Rome, Italy). Appl Geochem 27(9):1767–1782CrossRefGoogle Scholar
  26. Carpenter SR (1983) Lake geometry: implications for production and sediment accretion rates. J Theor Biol 105:273–286Google Scholar
  27. Casper P (1992) Methane production in lakes of different trophic state. Arch Hydrobiol Beih Ergebn Limnol 37:149–154Google Scholar
  28. Chiodini G (1996) Gases dissolved in groundwaters: analytical methods and examples of applications in central Italy. In: Marini L, Ottonello G (eds) Proc. Symp. Environmental Geochemistry, Castelnuovo di Porto, Rome, 22–26 May, pp 135–148Google Scholar
  29. Chiodini G, Cioni R, Guidi M, Marini L, Principe C, Raco B (1997) Water and gas chemistry of the Lake Piccolo of Monticchio (Mt Vulture, Italy). Current Research on Volcanic Lakes 10:3–8Google Scholar
  30. Chiodini G, Cioni R, Guidi M, Magro G, Marini L, Raco B (2000) Gas chemistry of the Lake Piccolo of Monticchio, Mt Vulture, in December 1996. Acta Vulcanol 12:139–142Google Scholar
  31. Chiodini G, Tassi F, Caliro S, Chiarabba C, Vaselli O, Rouwet D (2012) Time-dependent CO2 variations in Lake Albano associated with seismic activity. Bull Volcanol 74:861–871CrossRefGoogle Scholar
  32. Chondrogianni C, Ariztegui D, Guilizzoni P, Lami A (1996) Lakes Albano and Nemi (central Italy): an overview. In: Guilizzoni G, Oldfield F (eds) Paleoenvironmental analysis of Italian Crater Lake and Adriatic sediments. Mem Ist Ital Idrobiol 55:17–22Google Scholar
  33. Cioni R, Guidi M, Raco B, Marini L, Gambardella B (2003) Water chemistry of Lake Albano (Italy). J Volcanol Geotherm Res 120:179–195CrossRefGoogle Scholar
  34. Cioni R, Marini L, Raco B (2006) The Lake Piccolo di Monticchio: fluid geochemistry and evaluation of the limnic eruption hazard. In: Principe C (ed) The geology of Mount Vulture. CNR, Regione Basilicata, pp 171–177Google Scholar
  35. Coleman ML, Shepherd TJ, Rouse JE, Moore GR (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54:993–995CrossRefGoogle Scholar
  36. Conrad R, Aragno M, Seiler W (1983) Production and consumption of hydrogen in a eutrophic lake. Appl Environ Microbiol 45:502–510Google Scholar
  37. Conticelli S, Peccerillo A (1992) Petrology and geochemistry of potassic and ultrapotassic volcanism in central Italy—petrogenesis and inferences on the evolution of the mantle source. Lithos 28(3–6):221–240CrossRefGoogle Scholar
  38. Conticelli S, Carlson RW, Widom E, Serri G (2007) Chemical and isotopic composition (Os, Pb, Nd, and Sr) of Neogene to Quaternary calc-alkalic, shoshonitic, and ultrapotassic mafic rocks from the Italian peninsula: inferences on the nature of their mantle sources. In: Beccaluva L, Bianchini G, Wilson M (eds) Cenozoic volcanism in the Mediterranean area. Geol Soc Am Special Paper 418:171–202Google Scholar
  39. Craig H, Lupton JE (1976) Primordial neon, helium and hydrogen in oceanic basalts. Earth Planet Sci Lett 31:369–385CrossRefGoogle Scholar
  40. Davison W, Heaney SI, Talling JF, Rigg E (1980) Seasonal transformations and movements of iron in a productive English lake with deep water anoxia. Schweiz Z Hydrol 42:196–224Google Scholar
  41. De Benedetti AA, Funiciello R, Giordano G, Diano G, Caprilli E, Paterne M (2008) Volcanology, history and myths of the Lake Albano maar (Colli Albani volcano, Italy). J Volcanol Geotherm Res 176:387–406CrossRefGoogle Scholar
  42. Doglioni C, Harabaglia P, Merlini S, Mongelli F, Peccerillo A, Piromallo C (1999) Orogens and slabs vs. their direction of subduction. Earth Sci Rev 45:167–208CrossRefGoogle Scholar
  43. Epstein S, Mayeda TK (1953) Variation of the 18O/16O ratio in natural waters. Geochim Cosmochim Acta 4:213–224CrossRefGoogle Scholar
  44. Evans WC, Kling GW, Tuttle ML, Tanyileke G, White LD (1993) Gas buildup in Lake Nyos, Cameroon: the recharge process and its consequences. Appl Geochem 8:207–221CrossRefGoogle Scholar
  45. Evans WC, White LD, Tuttle ML, Kling GW, Tanyileke G, Michel RL (1994) Six years of changes at Lake Nyos, Cameroon yield clues to the past and cautions for the future. Geochem J 28:139–162CrossRefGoogle Scholar
  46. Evans WC, White LD, Rapp JB (1998) Geochemistry of some gases in hydrothermal fluids from the southern Juan de Fuca ridge. J Geophys Res 15:305–313Google Scholar
  47. Faccenna C, Piromallo C, Crespo-Blanc A, Jolivet L, Rossetti F (2004) Lateral slab deformation and the origin of the western Mediterranean arcs. Tectonics 23, TC1012, 21 pp. doi:10.1029/2002TC001488
  48. Frenzel P, Thebrath B, Conrad R (1990) Oxidation of methane in the oxic surface layer of a deep lake sediment (Lake Constance). FEMS Microbiol Ecol 73:149–158CrossRefGoogle Scholar
  49. Funiciello R, Giordano G, De Rita D, Carapezza ML, Barberi F (2002) L’attività recente del cratere del Lago Albano di Castelgandolfo. Rend Fis Acc Lincei 9–13:113–143CrossRefGoogle Scholar
  50. Funiciello R, Giordano G, De Rita D (2003) The Albano maar lake (Colli Albani Volcano, Italy): recent volcanic activity and evidence of pre-Roman Age catastrophic lahar events. J Volcanol Geotherm Res 123:43–61CrossRefGoogle Scholar
  51. Gächter R, Bloesch J (1985) Seasonal and vertical variation in the C:P ratio of suspended and settling seston of lakes. Hydrobiologia 128(3):193–200. doi:10.1007/BF00006814 CrossRefGoogle Scholar
  52. Gächter R, Mares A (1985) Does settling seston release soluble reactive phosphorus in the hypolimnion of lakes? Limnol Oceanogr 30(2):364–371CrossRefGoogle Scholar
  53. Gambardella B, Giosa P, Marini L (2006) Il ruolo della interazione acqua-roccia nella genesi delle acque minerali del Monte Vulture. In: Principe C (ed) The geology of Mount Vulture. CNR, Regione Basilicata, pp 113–148Google Scholar
  54. Giordano G, De Benedetti AA, Diana A, Diano G, Gaudioso F, Marasco F, Miceli M, Mollo S, Cas RAF, Funiciello R (2006) The Colli Albani mafic caldera (Roma, Italy): stratigraphy, structure and petrology. J Volcanol Geotherm Res 155:49–80CrossRefGoogle Scholar
  55. Hoefs J (2009) Stable isotope geochemistry, 6th edn. Springer, Berlin, p 288Google Scholar
  56. Hongve D (1997) Cycling of iron, manganese, and phosphate in a meromictic lake. Limnol Oceanogr 42:635–647CrossRefGoogle Scholar
  57. Hunt JM (1984) Generation and migration of light hydrocarbons. Science 226:1265–1270CrossRefGoogle Scholar
  58. Hurst T, Christenson B, Cole-Baker J (2012) Use of a weather buoy to derive improved heat and mass balance parameters for Ruapehu Crater Lake. J Volcanol Geotherm Res 235:23–28CrossRefGoogle Scholar
  59. Improta C, Andini S, Ferrara L (2004) Chemical and ecotoxicological characterization of Averno Lake. Bull Environ Contam Toxicol 72:472–481CrossRefGoogle Scholar
  60. Jetten MS, Strous M, van de Pas-Schoonen KT, Schalk J, van Dongen UG, van de Graaf AA, Logemann S, Muyzer G, van Loosdrecht MC, Kuenen JG (1998) The anaerobic oxidation of ammonium. FEMS Microbiol Rev 22(5):421–437CrossRefGoogle Scholar
  61. Kusakabe M (1996) Hazardous crater lakes. In: Scarpa R, Tilling RI (eds) Monitoring and mitigation of volcano hazards. Springer, Berlin, pp 573–598CrossRefGoogle Scholar
  62. Kusakabe M, Ohba T, Issa YY, Satake H, Ohizumi T, Evans WC, Tanyileke G, Kling GW (2008) Evolution of CO2 in lakes Monoun and Nyos, Cameroon, before and during controlled degassing. Geochem J 42:93–118CrossRefGoogle Scholar
  63. Loeb SL, Reuter JE (1981) The epilithic periphyton community: a five-lake comparative study of community productivity, nitrogen metabolism and depth-distribution of standing crop. Verh Internat Verein Limnol 21:346–352Google Scholar
  64. Longinelli A, Selmo E (2003) Isotopic composition of precipitation in Italy: a first overall map. J Hydrol 270:75–88CrossRefGoogle Scholar
  65. Lopes F, Viollier E, Thiam A, Michard G, Abril G, Groleau A, Prévot F, Carrias JF, Albéric P, Jézéquel D (2011) Biogeochemical modeling of anaerobic vs. aerobic methane oxidation in a meromictic crater lake (Lake Pavin, France). Appl Geochem 26:1919–1932CrossRefGoogle Scholar
  66. Mah RA, Ward DM, Baresi L, Glass TL (1977) Biogenesis of methane. Annu Rev Microbiol 31:309–341CrossRefGoogle Scholar
  67. Mamyrin BA, Tolstikhin IN (1984) Helium isotopes in nature. Elsevier, AmsterdamGoogle Scholar
  68. Mango FD (1997) The light hydrocarbons in petroleum: a critical review. Org Geochem 26:417–440CrossRefGoogle Scholar
  69. Mango FD (2000) The origin of light hydrocarbons. Geochim Cosmochim Acta 64:1265–1277CrossRefGoogle Scholar
  70. Martini M, Giannini L, Prati F, Tassi F, Capaccioni B, Iozzelli P (1994) Chemical characters of crater lakes in the Azores and Italy: the anomaly of the Lake Albano. Geochem J 28:173–184CrossRefGoogle Scholar
  71. Martini M, Tassi F, Giannini L, Vaselli O (1995) Monticchio crater lakes (Italy): hazardous CO2 reservoir? Current Research on Volcanic Lakes 8:11–17Google Scholar
  72. Matsubaya O, Sakai H (1978) D/H and 18O/16O fractionation factors in evaporation of water at 60 and 80 °C. Geochem J 12:121–126CrossRefGoogle Scholar
  73. Mattei M, Conticelli S, Giordano G (2010) The Tyrrhenian margin geological setting: from the Apennine orogeny to the K-rich volcanism. In: Funiciello R, Giordano G (ed) The Colli Albani volcano. Special Publications of IAVCEI, 3. Geological Society of London, London, pp 7–27Google Scholar
  74. Minissale A (2004) Origin, transport and discharge of CO2 in central Italy. Earth Sci Rev 66:89–141CrossRefGoogle Scholar
  75. Moeller RE, Roskoski JP (1978) Nitrogen-fixation in the littoral benthos of an oligotrophic lake. Hydrobiologia 60(1):13–16CrossRefGoogle Scholar
  76. Molongoski JJ, Klug MJ (1980) Anaerobic metabolism of particulate organic matter in the sediments of a hypereutrophic lake. Freshwater Biol 10:507–518CrossRefGoogle Scholar
  77. Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176CrossRefGoogle Scholar
  78. Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16(3):177–184. doi:10.1111/j.1574-6941.1995.tb00281.x CrossRefGoogle Scholar
  79. Nairn IA, Wood CP, Hewson CAY, Otway PM (1979) Phreatic eruptions of Ruapheu: April 1975. N Z J Geol Geophys 22:155–173CrossRefGoogle Scholar
  80. O’Leary MH (1988) Carbon isotopes in photosynthesis. BioScience 38:328–336CrossRefGoogle Scholar
  81. Orsi G, Di Vito MA, Isaia R (2004) Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull Volcanol 66:514–530CrossRefGoogle Scholar
  82. Panza GF, Peccerillo A, Aoudia A, Farina B (2007) Geophysical and petrological modelling of the structure and composition of the crust and upper mantle in complex geodynamic setting: the Tyrrhenian Sea and surroundings. Earth Sci Rev 80:1–46CrossRefGoogle Scholar
  83. Pasternack GB, Varekamp JC (1997) Volcanic lake systematics I. Physical constraints. Bull Volcanol 58(7):528–538. doi:10.1007/s004450050160 CrossRefGoogle Scholar
  84. Paternoster M, Liotta M, Favara R (2008) Stable isotope ratios in meteoric recharge and groundwater at Mt Vulture volcano, southern Italy. J Hydrol 348:87–97CrossRefGoogle Scholar
  85. Peccerillo A (2005) Plio-Quaternary volcanism in Italy. Petrology, geochemistry, geodynamics. Springer, Berlin, p 365Google Scholar
  86. Rice A (2000) Rollover in volcanic crater lakes: a possible cause for Lake Nyos type disasters. J Volcanol Geotherm Res 97:233–239CrossRefGoogle Scholar
  87. Rich PH (1975) Benthic metabolism of a soft-water lake. Verh Internat Verein Limnol 19:1023–1028Google Scholar
  88. Rich PH (1980) Hypolimnetic metabolism in three Cape Cod lakes. Amer Midland Natur 104:102–109CrossRefGoogle Scholar
  89. Rollison H (1993) Using geochemical data: evaluation, presentation, interpretation. Longman Scientific and Technical, New York, p 352Google Scholar
  90. Rowe GL Jr (1994) Oxygen, hydrogen and sulfur isotope systematics of the crater lake system of Poas volcano, Costa Rica. Geochem J 28:263–287CrossRefGoogle Scholar
  91. Rudd JWM, Taylor CD (1980) Methane cycling in aquatic environments. Adv Aquat Microbiol 2:77–150Google Scholar
  92. Rudd JWM, Hamilton RD, Campbell NER (1974) Measurement of microbial oxidation of methane in lake water. Limnol Oceanogr 19:519–524Google Scholar
  93. Salata GG, Roelke LA, Cifuentes LA (2000) A rapid and precise method for measuring stable carbon isotope ratios of dissolved inorganic carbon. Mar Chem 69:153–161CrossRefGoogle Scholar
  94. Scarascia S, Lozej A, Cassinis R (1994) Crustal structures of the Ligurian, Tyrrhenian and Ionian seas and adjacent onshore areas interpreted from wide-angle seismic profiles. Boll Geofis Teor Appl 36:5–19Google Scholar
  95. Schettler G, Alberic P (2008) Laghi di Monticchio (Southern Italy, Region Basilicata): genesis of sediments—a geochemical study. J Paleolimnol 40:529–556CrossRefGoogle Scholar
  96. Schmid M, Halbwachs M, Wehrli B, Wüest A (2005) Weak mixing in Lake Kivu: new insights indicate increasing risk of uncontrolled gas eruption. Geochem Geophys Geosyst 6:1–11CrossRefGoogle Scholar
  97. Schoell M (1980) The hydrogen and carbon isotopic composition of methane from natural gases of various origins. Geochim Cosmochim Acta 44:649–661CrossRefGoogle Scholar
  98. Schoell M (1988) Multiple origins of methane in the Earth. Chem Geol 71:1–10CrossRefGoogle Scholar
  99. Scrocca D, Carminati E, Doglioni C (2005) Deep structure of the southern Apennines, Italy: thin-skinned or thick-skinned? Tectonics 24, TC3005, 20 pp. doi:10.1029/2004TC001634
  100. Sigurdsson H, Devince JD, Tchoua FM, Presser TS, Pringle MKW, Evans WC (1987) Origin of the lethal gas burst from Lake Monoun, Cameroon. J Volcanol Geotherm Res 31:1–16CrossRefGoogle Scholar
  101. Stewart WDP, Preston T, Peterson HG, Christofi N (1982) Nitrogen cycling in eutrophic freshwaters. Philosoph Transact Royal Soc B296:491–509CrossRefGoogle Scholar
  102. Stoppa F, Creati N, Rosatelli G, Rozzi B (1999) From mantle to vent, anatomy of a volcano, Mt Vulture (Southern Italy). Plinius 22:352–353Google Scholar
  103. Tassi F, Montegrossi G, Vaselli O (2004a) Metodologie di campionamento ed analisi di fasi gassose. Internal Report CNR-IGG, Florence, no. 1/2003, pp 16Google Scholar
  104. Tassi F, Vaselli O, Giannini L, Tedesco D, Nencetti A, Montegrossi G, Yalire MM (2004b) A low-cost and effective method to collect water and gas samples from stratified crater lakes: the 485 m deep lake Kivu (DRC). In: Proceedings of the IAVCEI General Assembly, Puchon, Chile, 14–19 NovemberGoogle Scholar
  105. Tassi F, Vaselli O, Luchetti G, Montegrossi G, Minissale A (2008) Metodo per la determinazione dei gas disciolti in acque naturali. Int Rep CNR-IGG, Florence, n° 10450:11Google Scholar
  106. Tassi F, Vaselli O, Tedesco D, Montegrossi G, Darrah T, Cuoco E, Mapendano MY, Poreda R, Delgado Huertas A (2009a) Water and gas chemistry at Lake Kivu (DRC): geochemical evidence of vertical and horizontal heterogeneities in a multi-basin structure. Geochem Geophys Geosyst 10. doi:10.1029/2008GC002191
  107. Tassi F, Vaselli O, Fernandez E, Duarte E, Martinez M, Delgado Huertas A, Bergamaschi F (2009b) Morphological and geochemical features of crater lakes in Costa Rica: an overview. J Limnol 68:193–205CrossRefGoogle Scholar
  108. Tassi F, Fiebig J, Vaselli O, Nocentini M (2012) Origins of methane discharging from volcanic–hydrothermal, geothermal and cold emissions in Italy. Chem Geol 310–311:36–48CrossRefGoogle Scholar
  109. Tedesco D, Scarsi P (1999) Chemical (He, H2, CH4, Ne, Ar, N2) and isotopic (He, Ne, Ar, C) variations at the Solfatara crater (southern Italy): mixing of different sources in relation to seismic activity. Earth Planet Sci Lett 171:465–480CrossRefGoogle Scholar
  110. Thauer RK, Badziong W (1980) Respiration with sulfate as electron acceptor. In: Knowles CJ (ed) Diversity of bacterial respiratory systems. CRC, Boca Raton, pp 65–85Google Scholar
  111. Valiela I (1991) Ecology of coastal ecosystems. In: Barnes RSK, Mann KH (eds) Fundamentals of aquatic ecology. Blackwell Science, Oxford, pp 57–76CrossRefGoogle Scholar
  112. Varekamp JC, Kreulen R (2000) The stable isotope geochemistry of volcanic lakes, with examples from Indonesia. J Volcanol Geotherm Res 97:309–327CrossRefGoogle Scholar
  113. Varekamp JC, Pasternack GB, Rowe GL Jr (2000) Volcanic lake systematics II. Chemical constraints. J Volcanol Geotherm Res 97:161–179CrossRefGoogle Scholar
  114. Vaselli O, Tassi F, Montegrossi G, Capaccioni B, Giannini L (2006) Sampling and analysis of fumarolic gases. Acta Vulcanol 1–2:65–76Google Scholar
  115. Vaselli O, Tassi F, Tedesco D, Poreda JR, Caprai A (2011) Submarine and inland gas discharges from the Campi Flegrei (southern Italy) and the Pozzuoli Bay: geochemical clues for a common hydrothermal–magmatic source. Procedia Earth Planet Sci 4:57–73CrossRefGoogle Scholar
  116. Veronesi ML, Barbieri A, Hanselmann KW (2002) Phosphorus, carbon and nitrogen enrichment during sedimentation in a seasonally anoxic lake (Lake Lugano, Switzerland). J Limnol 61(2):215–223CrossRefGoogle Scholar
  117. Weiss R (1970) The solubility of nitrogen, oxygen and argon in water and seawater. Deep-Sea Res 17:721–735Google Scholar
  118. Whitfield M (1978) Activity coefficients in natural waters. In: Pytkowicz RM (ed) Activity coefficients in electrolyte solutions. CRC, Boca Raton, pp 153–300Google Scholar
  119. Whiticar MJ (1999) Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem Geol 161:291–314CrossRefGoogle Scholar
  120. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc Natl Acad Sci 87:44576–44579Google Scholar
  121. Zehnder AJB (1978) Ecology of methane formation. In: Michell R (ed) Water pollution microbiology. Wiley, New York, pp 349–376Google Scholar
  122. Zhang J, Quay PD, Wilbur DO (1995) Carbon isotope fractionation during gas–water exchange and dissolution of CO2. Geochim Cosmochim Acta 59:107–114CrossRefGoogle Scholar
  123. Zolitschka B, Negendank JFW (1996) Sedimentology, dating and palaeoclimatic interpretation of a 763 ka record from Lago Grande di Monticchio, southern Italy. Quat Sci Rev 15:101–112CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jacopo Cabassi
    • 1
  • Franco Tassi
    • 1
    • 2
  • Orlando Vaselli
    • 1
    • 2
  • Jens Fiebig
    • 3
  • Matteo Nocentini
    • 1
    • 2
  • Francesco Capecchiacci
    • 2
  • Dmitri Rouwet
    • 4
  • Gabriele Bicocchi
    • 1
  1. 1.Department of Earth SciencesUniversity of FlorenceFlorenceItaly
  2. 2.CNR – Institute of Geosciences and Earth ResourcesFlorenceItaly
  3. 3.Institut für GeowissenschaftenGoethe-UniversitätFrankfurt am MainGermany
  4. 4.Istituto Nazionale di Geofisica e Vulcanologia, Sezione di BolognaBolognaItaly

Personalised recommendations