Advertisement

Bulletin of Volcanology

, Volume 74, Issue 10, pp 2435–2448 | Cite as

Diffuse volcanic degassing and thermal energy release from Hengill volcanic system, Iceland

  • Pedro A. HernándezEmail author
  • Nemesio M. Pérez
  • Thráinn Fridriksson
  • Jolie Egbert
  • Evgenia Ilyinskaya
  • Andri Thárhallsson
  • Gretar Ívarsson
  • Gestur Gíslason
  • Ingvi Gunnarsson
  • Birgir Jónsson
  • Eleazar Padrón
  • Gladys Melián
  • Toshiya Mori
  • Kenji Notsu
Research Article

Abstract

We report the first detailed study of spatial variations on the diffuse emission of carbon dioxide (CO2) and hydrogen sulfide (H2S) from Hengill volcanic system, Iceland. Soil CO2 and H2S efflux measurements were performed at 752 sampling sites and ranged from nondetectable to 17,666 and 722 g m−2 day−1, respectively. The soil temperature was measured at each sampling site and used to evaluate the heat flow. The chemical composition of soil gases sampled at selected sampling sites during this study shows they result from a mixing process between deep volcanic/hydrothermal component and air. Most of the diffuse CO2 degassing is observed close to areas where active thermal manifestations occur, northeast flank of the Hengill central volcano close to the Nesjavellir power plant, suggesting a diffuse degassing structure with a SSW–NNE trend, overlapping main fissure zone and indicating a structural control of the degassing process. On the other hand, H2S efflux values are in general very low or negligible along the study area, except those observed at the northeast flank of the Hengill central volcano, where anomalously high CO2 efflux and soil temperatures were also measured. The total diffuse CO2 emission estimated for this volcanic system was about 1,526 ± 160 t day−1 of which 453 t day−1 (29.7 %) are of volcanic/hydrothermal origin. To calculate the steam discharge associated with the volcanic/hydrothermal CO2 output, we used the average H2O/CO2 mass ratio from 12 fumarole samples equal to 88.6 (range, 9.4–240.2) as a representative value of the H2O/CO2 mass ratios for Hengill fumarole steam. The resulting estimate of the steam flow associated with the gas flux is equal to 40,154 t day−1. The condensation of this steam results in thermal energy release for Helgill volcanic system of 1.07 × 1014 J day−1 or to a total heat flow of 1,237 MWt.

Keywords

Diffuse CO2 emission Diffuse H2S emission Heat flux Hengill volcano 

Notes

Acknowledgments

This research was financially supported by a grant from the Spanish Ministry of Science and Technology (CGL2005-07509) as well as by the Cabildo Insular de Tenerife (Spain). Field and logistic support was also provided by ISOR and Reykjavik Energy. The authors thank one anonymous reviewer and Williams C. Evans for their constructive comments.

References

  1. Allard P, Carbonelle J, Dajlevic D, Le Bronec J, Morel P, Robe MC, Maurenas JM, Faivre-Pierret R, Martins D, Sabroux JC, Zettwoog P (1991) Eruptive and diffuse emissions of CO2 from Mount Etna. Nature 351:387–391CrossRefGoogle Scholar
  2. Ármannsson H, Fridriksson T, Wiese F, Hernández P, Pérez N (2007) CO2 budget of the Krafla geothermal system, NE-Iceland. In: Bullen TD, Wang Y (eds) Water–rock interaction. Taylor & Francis Group, London, pp 189–192Google Scholar
  3. Árnason K, Magnússon I (2001) Geothermal activity in the Hengill area. Results from resistivity mapping. Orkusfnun Report, in Icelandic with English abstract OS.2001/091, p 250Google Scholar
  4. Árnason K, Eysteinsson H, Hersir G (2010) Joint 1D inversion of TEM and MT data and 3D inversion of MT data in the Hengill area, SW Iceland. Geothermics 39:13–34CrossRefGoogle Scholar
  5. Arnórsson S, Gunnlaugsson E (1985) New gas geothermometers for geothermal exploration. Calibration and application. Geochim Cosmochim Acta 49:1307–1326CrossRefGoogle Scholar
  6. Arnórsson S, Bjarnaso JÖ, Giroud N, Gunnarsson I, Stefánsson A (2006) Sampling and analysis of geothermal fluids. Geofluids 6(3):203–216Google Scholar
  7. Baubron JC, Allard P, Toutain JP (1990) Diffuse volcanic emissions of carbon dioxide from Vulcano Island, (Italy). Nature 344:51–53CrossRefGoogle Scholar
  8. Björnsson A, Hersir GP, Björnsson G (1986) The Hengill high-temperature area in SW-Iceland. Reg Geophys Surv Geotherm Resour Counc Trans 10:205–210Google Scholar
  9. Björnsson G, Hjartarson A, Bödvarsson GS, Steingrímsson, B (2003) Development of a 3-D geothermal reservoir model for the greater Hengill volcano in SW-Iceland. Proceedings of the Tough Symposium, Lawrence Berkeley National Laboratory, Berkeley, California, 12–14 MayGoogle Scholar
  10. Bodvarsson GS, Bjornsson S, Gunnarsson A, Gunnlaugsson E, Sigurdsson O, Stefansson V, Steingrimsson B (1990) The Nesjavellir geothermal field, Iceland. Part 1. Field characteristics and development, of a three-dimensional numerical model. Geotherm Sci & Tech 2(3):189–228Google Scholar
  11. Brombach T, Hunziker C, Chiodini G, Cardellini C, Marini L (2001) Soil diffuse degassing and thermal energy fluxes from the southern Lakki plain, Nysiros (Greece). Geophys Res Lett 28(1):69–72CrossRefGoogle Scholar
  12. Carapezza ML, Inguaggiato S, Brusca L, Longo M (2004) Geochemical precursors of the activity of an open-conduit volcano: the Stromboli 2002–2003 eruptive events. Geophys Res Lett 31:L07620. doi: 10.1029/2004GL019614 CrossRefGoogle Scholar
  13. Carapezza ML, Barberi F, Ranaldi M, Ricci T, Tarchini L, Barrancos J, Fischer C, Perez N, Weber K, Di Piazza A, Gattuso A (2011) Diffuse CO2 soil degassing and CO2 and H2S concentrations in air and related hazards at Vulcano Island (Aeolian arc, Italy). J Volcanol Geotherm Res. doi: 10.1016/j.jvolgeores.2011.06.010
  14. Cardellini G, Chiodini G, Frondini F (2003) Application of stochastic simulation to CO2 flux from soil: mapping and quantification of gas release. J Geophys Res 108(B9):2425. doi: 10.1029/2002JB002165 CrossRefGoogle Scholar
  15. Chiodini G, Frondini F, Raco B (1996) Diffuse emission of CO2 from the Fossa crater Vulcano Island (Italy). Bull Volcanol 58:41–50CrossRefGoogle Scholar
  16. Chiodini G, Cioni R, Guidi M, Raco B, Marini L (1998) Soil CO2 flux measurements in volcanic and geothermal areas. Appl Geochem 13:543–552CrossRefGoogle Scholar
  17. Chiodini G, Frondini F, Cardellini C, Granieri D, Marini L, Ventura G (2001) CO2 degassing and energy release at Solfatara volcano, Campi Flegrei, Italy. J Geophys Res 106(B8):16213–16221CrossRefGoogle Scholar
  18. Chiodini G, Baldini A, Barberi F, Carapezza ML, Cardellini C, Frondini F, Granier D, Ranaldi M (2007) Carbon dioxide degassing at Latera caldera (Italy): evidence of geothermal reservoir and evaluation of its potential energy. J Geophys Res 112:B12204. doi: 10.1029/2006JB004896 CrossRefGoogle Scholar
  19. Dawson GB (1964) The nature and assessment of heat flow from hydrothermal areas. N Z J Geol Geophys 7:155–171CrossRefGoogle Scholar
  20. Deutsch CV, Journel AG (1998) GSLIB: Geostatistical Software Library and user’s guide. Oxford University Press, New York, p 369Google Scholar
  21. Foulger GR (1988) The Hengill triple junction, SW Iceland. 1. Tectonic structure and the spatial and temporal distribution of local earthquakes. J Geophys Res 93(B11):493–506Google Scholar
  22. Foulger GR (1995) The Hengill geothermal area, Iceland: variation of temperature gradients deduced from the maximum depth of seismogenesis. J Volcanol Geotherm Res 65:119–133CrossRefGoogle Scholar
  23. Foulger GR, Arnott SA (1993) Local tomography: volcanoes and the accretionary plate boundary in Iceland. In: Iyer HM, Hirahara K (eds) Seismic tomography: theory and practise. Chapman and Hall, London, pp 644–675Google Scholar
  24. Foulger GR, Toomey DR (1989) Structure and evolution of the Hengill-Grensdalur central volcano complex, Iceland: geology, geophysics and seismic tomography. J Geophys Res 94:17511–17522CrossRefGoogle Scholar
  25. Franzson H, Kristjánsson BR, Gunnarsson G, Björnsson G, Hjartarson A, Steingrímsson B, Gunnlaugsson E, Gíslason G (2005) The Hengill-Hellisheiði geothermal field. Development of a conceptual geothermal model. Proceedings of the World Geothermal Congress 2005, Antalya, Turkey, 24–29 AprilGoogle Scholar
  26. Fridriksson T, Kristjánsson BR, Ármannsson H, Margrétardóttir E, Ólafsdóttir S, Chiodini G (2006) CO2 emissions and heat flow through soil, fumaroles, and steam heated mud pools at the Reykjanes geothermal area, SW Iceland. Appl Geochem 21(9):1551–1569CrossRefGoogle Scholar
  27. Fridriksson T, Óladóttir AA, Jónsson P, Eyjólfsdóttir EI (2010) The response of the Reykjanes geothermal system to 100 MWe power production: fluid chemistry and surface activity. Proceedings of the World Geothermal Congress 2010, Bali Indonesia. Available at http://www.geothermal-energy.org/pdf/IGAstandard/WGC/2010/0626.pdf
  28. Friese N, Krumbholz M, Burchardt S, Gudmundsson A (2005) Tectonics of the Hengill volcano, Southwest Iceland. Abstract V21D-0638, Am Geophys Union, Fall Meeting 2005Google Scholar
  29. Frondini F, Chiodini G, Caliro S, Cardellini C, Granieri D, Ventura G (2004) Diffuse CO2 degassing at Vesuvio, Italy. Bull Volcanol 66:642–651CrossRefGoogle Scholar
  30. Frondini F, Caliro S, Cardellini C, Chiodini G, Morgantini N (2009) Carbon dioxide degassing and thermal energy release in the Monte Amiata volcanic–geothermal area (Italy). Appl Geochem 24(5):860–875. doi: 10.1016/japgeochem200901010 CrossRefGoogle Scholar
  31. Gerlach TM, Graeber EJ (1985) Volatile budget of Kilauea volcano. Nature 313(no 6000):273–277CrossRefGoogle Scholar
  32. Gerlach TM, Doukas MP, McGee KA, Kessler R (2001) Soil flux and total emission rates of magmatic CO2 at the Horeshoe Lake tree kill, Mammoth Mountain, California, 1995–1999. Chem Geol 177:101–116CrossRefGoogle Scholar
  33. Giggenbach WF (1980) Geothermal gas equilibria. Geochim Cosmochim Acta 44:2021–2032CrossRefGoogle Scholar
  34. Granieri D, Carapezza ML, Chiodini G, Avino R, Caliro S, Ranaldi M, Ricci T, Tarchini L (2006) Correlated increase in CO2 fumarolic content and diffuse emission from La Fossa crater (Vulcano, Italy): evidence of volcanic unrest or increasing gas release from a stationary deep magma body? Geophys Res Lett 33:L13316. doi: 10.1029/2006GL026460 CrossRefGoogle Scholar
  35. Hernández PA, Pérez NM, Salazar JM, Nakai S, Notsu K, Wakita H (1998) Diffuse emissions of carbon dioxide, methane, and hellium-3 from Teide volcano, Tenerife, Canary Islands. Geophys Res Lett 25:3311–3314CrossRefGoogle Scholar
  36. Hernández PA, Notsu K, Salazar JM, Mori T, Natale G, Okada H, Virgili G, Shimoike Y, Sato M, Pérez NM (2001a) Carbon dioxide degassing by advective flow from Usu volcano, Japan. Science 292:83–86CrossRefGoogle Scholar
  37. Hernández PA, Salazar JM, Shimoike Y, Mori T, Notsu K, Perez NM (2001b) Diffuse emission of CO2 from Miyakejima volcano, Japan. Chem Geol 177:175–185CrossRefGoogle Scholar
  38. Hernández PA, Notsu K, Tsurumi M, Mori T, Ohno M, Shimoike Y, Salazar JM, Pérez, NM (2003) Carbon dioxide emissions from soils at Hakkoda, North Japan. J Geophys Res 108:6-1–6-10Google Scholar
  39. Hernández PA, Notsu K, Okada H, Mori T, Sato M, Barahona F, Pérez NM (2006) Diffuse emission of CO2 from Showa-Shinzan, Hokkaido, Japan: a sign of volcanic dome degassing. Pure Appl Geophys 163:869–881CrossRefGoogle Scholar
  40. Ingólfsson Ó, Sigmarsson O, Sigmundsson F, Símonarson L (2008) The dynamic geology of Iceland. Jökull 58:1–2Google Scholar
  41. Jousset P, Haberland C, Bauer K, Arnason K (2011) Hengill geothermal volcanic complex (Iceland) characterized by integrated geophysical observations. Geothermics 40(1):1–24CrossRefGoogle Scholar
  42. Keenan JH, Keyes FG, Hill PG, Moore JG (1969) Steam tables—thermodynamic properties of water including vapor, liquid and solid phases (international edition metric units). Wiley, New York, p 162Google Scholar
  43. Landsvirkjun (2012) Landsvirkjun annual report 2011. Landsvirkjun, Reykjavík, Iceland, pp 108. Available at http://www.landsvirkjun.is/um-landsvirkjun/utgefid-efni/arsskyrsla
  44. Lewicki L, Hilley GE, Tosha T, Aoyagi R, Yamamoto K, Benson SM (2007) Dynamic coupling of volcanic CO2 flow and wind at the Horseshoe Lake tree kill, Mammoth Mountain, California. Geophys Res Lett 34:L03401. doi: 10.1029/2006gl028848 CrossRefGoogle Scholar
  45. Marty B, Gunnlaugsson E, Jambon A, Óskarsson N, Ozima M, Pineau F, Torssander P (1991) Gas geochemistry of geothermal fluids, the Hengill area, southwest rift zone of Iceland. Chem Geol 91:207–225CrossRefGoogle Scholar
  46. Notsu K, Sugiyama K, Hosoe M, Uemura A, Shimoike Y, Tsunomori F, Sumino H, Yamamoto J, Mori T, Hernández PA (2005) Diffuse CO2 efflux from Iwojima volcano, Izu-Ogasawara arc, Japan. J Volcanol Geotherm Res 139:147–161CrossRefGoogle Scholar
  47. Óladóttir AÓ, Snæbjörnsdóttir SÓ (2011) Observations on surface activity in the Reykjanes geothermal field. ÍSOR Report 2011/055, Iceland GeoSurvey, Reykjavik, p 29Google Scholar
  48. Óskarsson F, Fridriksson T (2011) Reykjanes production field. Geochemical monitoring in 2010. ÍSOR Report 2011/050, Iceland GeoSurvey, Reykjavík, p 51Google Scholar
  49. Padrón E, Melián G, Nolasco D, Barrancos J, Hernández PA, Pérez N (2007) Precursory diffuse carbon dioxide degassing related to seismic activity in El Hierro islands, Canary Islands, Spain. Pure Appl Geophys 165:95–114CrossRefGoogle Scholar
  50. Padrón E, Hernández PA, Toulkeridis T, Pérez NM, Marrero R, Melián G, Virgili G, Notsu K (2008) Diffuse CO2 emission rate from Pululahua and the lake-filled Cuicocha calderas, Ecuador. J Volcanol Geotherm Res 176(1):163–169CrossRefGoogle Scholar
  51. Parkinson KJ (1981) An improved method for measuring soil respiration in the field. J Appl Ecol 18:221–228CrossRefGoogle Scholar
  52. Pérez NM, Salazar JML, Hernández PA, Soriano T, Lopez K, Notsu K (2004) Diffuse CO2 and 222Rn degassing from San Salvador volcano, El Salvador, Central America. Bull Geol Soc Am 375:227–236Google Scholar
  53. Pérez NM, Hernández PA, Padrón E, Cartagena R, Olmos R, Barahona F, Melián G, Salazar P, López DL (2006) Anomalous diffuse CO2 emission prior to the January 2002 short-term unrest at San Miguel Volcano, El Salvador, Central America. Pure Appl Geophys 4:883–896. doi: 10.1007/s00024-006-0050-1
  54. Pérez N, Hernández PA, Barrancos J, Melian G, Henriquez B, Mora R, Toulkeridis T (2007) H2S emission from Santa Ana (El Salvador), Masaya (Nicaragua) and Poas (Costa Rica) and Sierra Negra (Galpagos) volcanoes. Proceedings of the IUGG XXIV General Assembly, 2–13 July, Perugia, Italy, VS015, Oral Presentation 6906Google Scholar
  55. Reykjavík Energy (2011) Reykjavik energy annual report 2010. Reykjavik Energy, Reykjavik, p 50Google Scholar
  56. Rogie JD, Kerrick DM, Sorey ML, Chiodini G, Galloway DL (2001) Dynamics of carbon dioxide emission at Mammoth Mountain, California. Earth Planet Sci Lett 188:535–541CrossRefGoogle Scholar
  57. Sæmundsson K (2006) The 1789 rifting event in the Hengill volcanic system, SW-Iceland. Am Geophys Union, Fall Meeting, Abstract T41B-1568Google Scholar
  58. Salazar JML, Hernández PA, Pérez NM, Melián G, Álvarez J, Segura F, Notsu K (2001) Diffuse emissions of carbon dioxide from Cerro Negro volcano, Nicaragua, Central America. Geophys Res Lett 28:4275–4278CrossRefGoogle Scholar
  59. Salazar JML, Hernández PA, Pérez NM, Olmos R, Barahona F, Cartagena R, Soriano T, Lopez K, Notsu K (2004) Spatial and temporal variations of diffuse CO2 degassing at Santa Ana–Izalco–Coatepeque volcanic complex, El Salvador, Central America. Bull Geol Soc Am Spec Pap 375:135–146Google Scholar
  60. Salazar P, Pereda E, Padron E, Melian G, Perez NM, Hernández PA (2005) Secular variations of soil H2S efflux at Teide volcano, Tenerife, Canary Islands. Geophys Res Abstr 7:10096Google Scholar
  61. Sinclair AJ (1974) Selection of thresholds in geochemical data using probability graphs. J Geochem Explor 3:129–149CrossRefGoogle Scholar
  62. Tennant CB, White ML (1959) Study of the distribution of some geochemical data. Econ Geol 54:1281–1290CrossRefGoogle Scholar
  63. Toutain JP, Baubron JC, Le Broned J, Allard P, Briole P, Marty B, Miele G, Tedesco D, Luongo G (1992) Continuous monitoring of distal gas emanations at Vulcano, southern Italy. Bull Volcanol 54:147–155CrossRefGoogle Scholar
  64. Tryggvason A, Rögnvaldsson ST, Flóvenz ÓG (2002) Three-dimensional imaging of the P- and S-wave velocity structure and earthquake locations beneath Southwest Iceland. Geophys J Int 151(3):848–866CrossRefGoogle Scholar
  65. Vogfjörd KS, Hjaltadóttir S, Slunga R (2005) Volcano-tectonic Interaction in the Hengill Region, Iceland during 1993–1998. Eur Geosci Union Geophys Res Abst 7:09947Google Scholar
  66. Voltaggio M, Spadoni M (2009) Mapping of H2S fluxes from the ground using copper passive samplers: an application study at the Zolforata di Pomezia degassing area (Alban Hills, Central Italy). J Volcanol Geotherm Res 179:56–68CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Pedro A. Hernández
    • 1
    • 2
    Email author
  • Nemesio M. Pérez
    • 1
    • 2
  • Thráinn Fridriksson
    • 3
  • Jolie Egbert
    • 3
    • 7
  • Evgenia Ilyinskaya
    • 3
    • 9
  • Andri Thárhallsson
    • 3
  • Gretar Ívarsson
    • 4
  • Gestur Gíslason
    • 4
    • 8
  • Ingvi Gunnarsson
    • 4
  • Birgir Jónsson
    • 5
  • Eleazar Padrón
    • 1
    • 2
  • Gladys Melián
    • 1
    • 2
  • Toshiya Mori
    • 6
  • Kenji Notsu
    • 6
    • 10
  1. 1.Environmental Research DivisionInstituto Tecnológico y de Energías Renovables (ITER)Granadilla de AbonaSpain
  2. 2.Instituto Volcanológico de Canarias (INVOLCAN)Puerto de La CruzSpain
  3. 3.Iceland GeoSurvey (ISOR)ReykjavíkIceland
  4. 4.Reykjavik Energy (Orkuveita Reykjavíkur)ReykjavíkIceland
  5. 5.Civil and Environmental Engineering DepartmentUniversity of IcelandReykjavíkIceland
  6. 6.Geochemical Research Center, Graduate School of ScienceThe University of TokyoTokyoJapan
  7. 7.Helmholtz Centre PotsdamGFZ German Research Centre for GeosciencesPotsdamGermany
  8. 8.Reykjavik GeothermalReykjavíkIceland
  9. 9.Icelandic Meteorological OfficeReykjavíkIceland
  10. 10.Center for Integrated Research and Education of Natural Hazards (CIREN)Shizuoka UniversityShizuokaJapan

Personalised recommendations