Bulletin of Volcanology

, Volume 74, Issue 9, pp 2051–2066 | Cite as

Emplacement conditions of the c. 1,600-year bp Collier Cone lava flow, Oregon: a LiDAR investigation

Research Article

Abstract

A long-standing question in lava flow studies has been how to infer emplacement conditions from information preserved in solidified flows. From a hazards perspective, volumetric flux (effusion rate) is the parameter of most interest for open-channel lava flows, as the effusion rate is important for estimating the final flow length, the rate of flow advance, and the eruption duration. The relationship between effusion rate, flow length, and flow advance rate is fairly well constrained for basaltic lava flows, where there are abundant recent examples for calibration. Less is known about flows of intermediate compositions (basaltic andesite to andesite), which are less frequent and where field measurements are limited by the large block sizes and the topographic relief of the flows. Here, we demonstrate ways in which high-resolution digital topography obtained using Light Detection and Ranging (LiDAR) systems can provide access to terrains where field measurements are difficult or impossible to collect. We map blocky lava flow units using LiDAR-generated bare earth digital terrain models (DTMs) of the Collier Cone lava flow in the central Oregon Cascades. We also develop methods using geographic information systems to extract and quantify morphologic features such as channel width, flow width, flow thickness, and slope. Morphometric data are then analyzed to estimate both effusion rates and emplacement times for the lava flow field. Our data indicate that most of the flow outline (which comprises the earliest, and most voluminous, flow unit) can be well explained by an average volumetric flux ∼14–18 m3/s; channel data suggest an average flux ∼3 m3/s for a later, channel-filling, flow unit. When combined with estimates of flow volume, these data suggest that the Collier Cone lava flow was most likely emplaced over a time scale of several months. This example illustrates ways in which high-resolution DTMs can be used to extract and analyze morphologic measurements and how these measurements can be analyzed to estimate emplacement conditions for inaccessible, heavily vegetated, or extraterrestrial lava flows.

Keywords

LiDAR Lava Flow Emplacement Collier Cone GIS 

Supplementary material

445_2012_650_Fig12_ESM.jpg (29 kb)
Fig. A

Lava flow field polygon with sample locations plotted for all analyzed bulk compositions. Circles are samples collected for this study. Triangles are analyses from J. Schick (1994). Black lines indicate along channel profiles for the western and northwestern lava flow lobes. (JPEG 28 kb)

445_2012_650_MOESM1_ESM.eps (503 kb)
High resolution image (EPS 502 kb)
445_2012_650_MOESM2_ESM.pdf (544 kb)
Table A(PDF 544 kb)
445_2012_650_MOESM3_ESM.pdf (226 kb)
Table B1Measurements of Collier lava flow morphologies from GIS swath boxes (PDF 225 kb)
445_2012_650_MOESM4_ESM.pdf (131 kb)
Table B2Measurements of Collier lava flow morphologies from GIS swath boxes (PDF 130 kb)

References

  1. Baker BH, McBirney AR (1986) Liquid fractionation. Part III: geochemistry of zoned magmas and the compositional effects of liquid fractionation. J Volcanol Geotherm Res 91(B6):6091–6112Google Scholar
  2. Borgia A, Linneman SR (1990) On the evolution of lava flows and the growth of volcanoes. In: Fink JH (ed) Lava flows and domes. Springer, Berlin, pp 208–243CrossRefGoogle Scholar
  3. Borgia A, Linneman S, Spencer D, Morales LD, Andre JB (1983) Dynamics of lava fronts, Arenal Volcano, Costa Rica. J Volcanol Geotherm Res 19:303–329CrossRefGoogle Scholar
  4. Calvari S, Neri M, Pinkerton H (2002) Effusion rate estimations during the 1999 summit eruption on Mount Etna, and growth of two distinct lava flow fields. J Volcanol Geotherm Res 119:107–123CrossRefGoogle Scholar
  5. Cashman KV, Kerr RC, Griffiths RW (2006) A laboratory model of surface crust formation and disruption on lava flows through non-uniform channels. Bull Volcanol 68:753–770CrossRefGoogle Scholar
  6. Cigolini C, Borgia A, Casertano L (1984) Inter-crater activity, aa-block lava, viscosity and flow dynamics: Arenal volcano, Costa Rica. J Volcanol Geotherm Res 20:155–176CrossRefGoogle Scholar
  7. Coltelli M, Proietti C, Branca S, Marsella M, Andronico D, Lodato L (2007) Analysis of the 2001 lava flow eruption of Mt. Etna from three-dimensional mapping. J Geophys Res 112:F02029. doi:10.1029/2006JF000598 CrossRefGoogle Scholar
  8. Crisci GM, Avolio MV, Behncke B, D’Ambrosio D, Di Gregorio S, Lupiano V, Neri M, Rongo R, Spataro W (2010) Predicting the impact of lava flows at Mount Etna, Italy. J Geophys Res 115:B04203. doi:10.1029/2009JB006431 CrossRefGoogle Scholar
  9. Favalli M, Tarquini S, Fornaciai A, Boscki E (2009a) A new approach to risk assessment of lava flow at Mount Etna. Geology 37:1111–1114. doi:10.1130/G30187A.1 CrossRefGoogle Scholar
  10. Favalli M, Mazzarini F, Pareschi MT, Boscki E (2009b) Topographic control on lava flow paths at Mount Etna, Italy: implications for hazard assessment. J Geophys Res 114:F01019. doi:10.1029/2007JF000918 CrossRefGoogle Scholar
  11. Favalli M, Harris AJL, Fornaciai A, Pareschi MT, Mazzarini F (2010a) The distal segment of Etna's 2001 basaltic lava flow. Bull Volcanol 72:119–127. doi:10.1007/s00445-009-0300-z CrossRefGoogle Scholar
  12. Favalli M, Fornaciai A, Mazzarini F, Harris A, Neri M, Behncke B, Parescki MT, Tarquini S, Boschi E (2010b) Evolution of an active lava flow field using mutitemporoal LiDAR acquisition. J Geophys Res 115:B11203. doi:10.1029/2010JB007463 CrossRefGoogle Scholar
  13. Favalli M, Tarquini S, Fornaciai A (2011) DOWNFLOW code and LIDAR technology for lava flow analysis and hazard assessment at Mount Etna. Ann Geophys 54:5. doi:10.4401/ag-5339
  14. Felpeto A, Arana V, Ortiz R, Astiz M, Garcia A (2001) Assessment and modeling of lava flow hazard on Lanzarote (Canary Islands). Nat Hazard 23:247–257CrossRefGoogle Scholar
  15. Fenton CR, Poreda RJ, Nash BP, Webb RH, Cerling TE (2004) Flood deposits, Western Grand Canyon, Arizona. J Geol 112:91–110CrossRefGoogle Scholar
  16. Fenton CR, Webb RH, Cerling TE (2006) Peak discharge of a Pleistocene lava-dam outburst flood in Grand Canyon, Arizona, USA. Quat Res 65(2):324–335CrossRefGoogle Scholar
  17. Fink JH, Griffiths RW (1990) Radial spreading of viscous-gravity currents with solidifying crust. J Fluid Mech 221:485–509CrossRefGoogle Scholar
  18. Gregg TKP, Fink JH (2000) A laboratory investigation into the effects of slope on morphology. J Volcanol Geotherm Res 96:145–159CrossRefGoogle Scholar
  19. Griffiths RW, Fink JH (1993) Effects of surface cooling on the spreading of lava flows and domes. J Fluid Mech 252:667–702CrossRefGoogle Scholar
  20. Griffiths RW, Fink JH (1997) Solidifying Bingham extrusions: a model for the growth of silicic lava domes. J Fluid Mech 347:13–36CrossRefGoogle Scholar
  21. Griffiths RW, Kerr RC, Cashman KV (2003) Patterns of solidification in channel flows with surface cooling. J Fluid Mech 496:33–62CrossRefGoogle Scholar
  22. Guest JE, Kilburn CRJ, Pinkerton H, Duncan AM (1987) The evolution of lava flow fields: observations of the 1981 and 1983 eruptions of Mount Etna, Sicily. Bull Volcanol 49:527–540CrossRefGoogle Scholar
  23. Harris AJL, Rowland SK (2001) FLOWGO: a kinematic thermo-rheological model for lava flowing in a channel. Bull Volcanol 63:20–44. doi:10.1007/s004450000120 CrossRefGoogle Scholar
  24. Harris AJL, Rowland SK (2009) Effusion rate controls on lava flow length and the role of heat loss: a review. In: Thordarson T, Self S, Larsen G, Rowland SK, Hoskuldsson A (eds) Studies in volcanology: the legacy of George Walker, Special Publications of IAVCEI, vol 2. Geological Society, London, pp 33–51Google Scholar
  25. Harris AJL, Dehn J, Calvari S (2007) Lava effusion rate definition and measurement: a review. Bull Volcanol 70:1–22. doi:10.1007/s00445-007-0120-y CrossRefGoogle Scholar
  26. Hofton MA, Malavassi E, Blair JB (2006) Quantifying recent pyroclastic and lava flows at Arenal Volcano, Costa Rica, using medium-footprint lidar. J Geophys Res 33:L21306. doi:10.1029/2006GL027822 Google Scholar
  27. Hon K, Kauahikaua J, Denlinger R, Mackay K (1994) Emplacement and inflation of pahoehoe sheet flows: observations and measurements of active lava flows on Kilauea Volcano, Hawaii. Geol Soc Am Bull 106:351–370CrossRefGoogle Scholar
  28. Kauahikaua J, Cashman KV, Mattox TN, Heliker CC, Hon KA, Mangan MT, Thornber CR (1998) Observations on basaltic lava streams in tubes from Kilauea Volcano, island of Hawai’i. J Geophys Res 103:27303–27323CrossRefGoogle Scholar
  29. Kauahikaua J, Sherrod DR, Cashman KV, Heliker C, Hon K, Mattox TN, Johnson JA (2003) Hawaiian lava-flow dynamics during the Pu’u’O’o-Kupaianaha eruption: a tale of two decades. U S Geol Surv Prof Pap 1676:63–88Google Scholar
  30. Kerr RC, Lyman AW (2007) Importance of surface crust strength during the flow of the 1988–1990 andesite lava of Lonquimay Volcano, Chile. J Geophys Res 112:B03209. doi:10.1029/2006JB004522 CrossRefGoogle Scholar
  31. Kerr RC, Griffish RW, Cashman KV (2006) Formation of channelized lava flows on an unconfined slope. J Geophys Res 111:B10206. doi:10.1029/2005JB004225 CrossRefGoogle Scholar
  32. Kilburn CRJ (2004) Fracturing as a quantitative indicator of lava flow dynamics. J Volcanol Geotherm Res 132:209–224Google Scholar
  33. Lipman PW, Banks NG (1987) Aa flow dynamics, Mauna Loa, 1984. U S Geol Surv Prof Pap 1350:1527–1567Google Scholar
  34. Lyman AW, Kerr RC (2006) Effect of surface solidification on the emplacement of lava flows on a slope. J Geophys Res 111:B05206. doi:10.1029/2005JB004133 CrossRefGoogle Scholar
  35. Lyman AW, Koenig E, Fink JH (2004) Predicting yield strengths and effusion rates of lava domes from morphology and underlying topography. J Volcanol Geotherm Res 129:125–138CrossRefGoogle Scholar
  36. Marsella M, Proietti C, Sonnessa A, Coltelli M, Tommasi P, Bernardo E (2009) The evolution of the Sciara del Fuoco subaerial slope during the 2007 Stromboli eruption: relation between deformation processes and effusive activity. J Volcanol Geotherm Res 182:201–213. doi:10.1016/j.jvolgeores.2009.02.002 CrossRefGoogle Scholar
  37. Mazzarini FMT, Pareschi MT, Favalli M, Isola I, Tarquini S, Boschi E (2005) Morphology of basaltic lava channels during the Mt. Etna September 2004 eruption from airborne laser altimeter data. Geophys Res Lett 32. doi:10.1029/2004GL021815
  38. Mazzarini F, Pareschi MT, Favalli M, Isola I, Tarquini S, Boschi E (2007) Lava flow identification and aging by means of Lidar intensity: the Mt. Etna case. J Geophys Res 112:B02201. doi:10.1029/2005JB004166 CrossRefGoogle Scholar
  39. Mckay D, Donnelly-Nolan JM, Jensen RA, Champion DE (2009) The post-Mazama northwest rift zone eruption at Newberry Volcano, Oregon in volcanoes to vineyards: geologic field trips through the dynamic landscape. In: O’Connor JE, Dorsey RJ, Madin I (eds), Geological Society of America, Inc. USA field guide. 15: 91–110Google Scholar
  40. McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57:331–351CrossRefGoogle Scholar
  41. Naranjo JA, Sparks RSJ, Stasiuk MV, Moreno MV, Ablay GJ (1992) Morphological, structural and textural variations in the 1988–1990 andesite lava of Lonquimay Volcano, Chile. Geol Mag 129(6):657–678CrossRefGoogle Scholar
  42. Ogden J, Basher L, McGlone M (1998) Fire, forest regeneration and links with early human habitation: evidence from New Zealand. Ann Bot 81:687–696CrossRefGoogle Scholar
  43. Perron JT, Kirchner JW, Dietrich WE (2008) Spectral signatures of characteristic spatial scales and nonfractal structure in landscapes. J Geophys Res 113:F04003. doi:10.1029/2007JF000866 CrossRefGoogle Scholar
  44. Pinkerton H, Sparks RSJ (1976) The 1975 subterminal lavas, Mount Etna: a case history of the formation of a compound lava field. J Volcanol Geotherm Res 1:167–182CrossRefGoogle Scholar
  45. Pinkerton H, Wilson L (1994) Factors controlling the lengths of channel-fed lava flows. Bull Volcanol 56:108–120Google Scholar
  46. Pyle DM, Elliott JR (2006) Quantitative morphology, recent evolution, and future activity of the Kemeni Islands volcano, Santorini, Greece. Geosphere 2(5):253–268CrossRefGoogle Scholar
  47. Riker JM, Cashman KV, Kauahikaua JP, Montierth CM (2009) The length of channelized lava flows: insight from the 1859 eruption of Mauna Loa Volcano, Hawaii. J Volcanol Geotherm Res 183:139–156CrossRefGoogle Scholar
  48. Roering JJ, Gerber M (2005) Fire and the evolution of steep, soil-mantled landscapes. Geology 33(5):349–352. doi:10.1130/G21260.1 CrossRefGoogle Scholar
  49. Rowland SK, Garbeil H, Harris AJL (2005) Lengths and hazards from channel-fed lava flows on Mauna Loa, Hawai’i, determined from thermal and downslope modeling with FLOWGO. Bull Volcanol 67:634–647CrossRefGoogle Scholar
  50. Schick JD (1994) Origin of compositional variability of the lavas at Collier Cone, High Cascades, Oregon. Masters thesis, University of OregonGoogle Scholar
  51. Self S, Keszthelyi L, Thordarson T (1998) The importance of pahoehoe. Annu Rev Earth Planet Sci 26:81–110Google Scholar
  52. Sherrod DR, Taylor EM, Ferns ML, Scott WE, Conrey RM, Smith GA (2004) Geologic map of the Bend 30-× 60-Minute Quadrangle, Central Oregon. In Geologic Investigations Series I-2683. USGS. (http://pubs.usgs.gov/imap/i2683/)
  53. Shrestha R, Carter W, Slatton C, Dietrich W (2007) “Research-Quality” airborne laser swath mapping: the defining factors. A white paper issued by NCALM. http://www.ncalm.cive.uh.edu/assets/publication_pdf/NCALM_WhitePaper_v1.2.pdf. Accessed 13 Sept 2011
  54. Soule SA, Cashman KV, Kauahikaua JP (2004) Examining flow emplacement through the surface morphology of three rapidly emplaced, solidified lava flows, Kilauea Volcano, Hawaii. Bull Volcanol 66:1–14. doi:10.1007/s00445-003-0291-0 CrossRefGoogle Scholar
  55. Tarquini S, Favalli M (2010) Changes of the susceptibility to lava flow invasion induced by morphological modifications of an active volcano: the case of Mount Etna, Italy. Nat Hazard 54:537–546CrossRefGoogle Scholar
  56. Valentine GA, Keating GN (2007) Eruptive styles and inferences about plumbing systems at Hidden Cone and Little Black Peak scoria cone volcanoes (Nevada, USA). Bull Volcanol 70:105–113. doi:10.1007/s00445-007-0123-8 CrossRefGoogle Scholar
  57. Ventura G, Vilardo G (2008) Emplacement mechanism of gravity flows inferred from high resolution Lidar data: the 1944 Somma-Vesuvius lava flow (Italy). Geomorphology 95:223–235CrossRefGoogle Scholar
  58. Wadge G, Walker GPL, Guest JE (1975) The output of the Etna volcano. Nature 255:385–387CrossRefGoogle Scholar
  59. Walker GPL (1971) Compound and simple lava flows and flood basalts. Bull Volcanol 35:579–590CrossRefGoogle Scholar
  60. Walker GPL (1973) Lengths of lava flows. Phil Trans R Soc A 274:107–118CrossRefGoogle Scholar
  61. Woolard JW, Colby JD (2002) Spatial characterization, resolution, and volumetric change of coastal dunes using airborne LIDAR: Cape Hatteras, North Carolina. Geomorphology 48:269–287CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of Geological SciencesUniversity of OregonEugeneUSA

Personalised recommendations