Skip to main content

The 5,660 yBP Boquerón explosive eruption, Teide–Pico Viejo complex, Tenerife

Abstract

Quantitative hazard assessments of active volcanoes require an accurate knowledge of the past eruptive activity in terms of eruption dynamics and the stratified products of eruption. Teide–Pico Viejo (TPV) is one of the largest volcanic complexes in Europe, but the associated eruptive history has only been constrained based on very general stratigraphic and geochronological data. In particular, recent studies have shown that explosive activity has been significantly more frequently common than previously thought. Our study contributes to characterization of explosive activity of TPV by describing for the first time the subplinian eruption of El Boquerón (5,660 yBP), a satellite dome located on the northern slope of the Pico Viejo stratovolcano. Stratigraphic data suggest complex shifting from effusive phases with lava flows to highly explosive phase that generated a relatively thick and widespread pumice fallout deposit. This explosive phase is classified as a subplinian eruption of VEI 3 that lasted for about 9–15 h and produced a plume with a height of up to 9 km above sea level (i.e. 7 km above the vent; MER of 6.9–8.2 × 105 kg/s). The tephra deposit (minimum bulk volume of 4–6 × 107 m3) was dispersed to the NE by up to 10 m/s winds. A similar eruption today would significantly impact the economy of Tenerife (e.g. tourism and aviation), with major consequences mainly for the communities around the Icod Valley, and to a minor extent, the Orotava Valley. This vulnerability shows that a better knowledge of the past explosive history of TPV and an accurate estimate of future potentials to generate violent eruptions is required in order to quantify and mitigate the associated volcanic risk.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Ablay GJ, Martí J (2000) Stratigraphy, structure, and volcanic evolution of the Pico Teide-Pico Viejo formation, Tenerife, Canary Islands. J Volcanol Geotherm Res 103:175–208. doi:10.1016/s0377-0273(00)00224-9

    Article  Google Scholar 

  • Ablay GJ, Carroll MR, Palmer MR, Martí J, Sparks RSJ (1998) Basanite- phonolite lineages of the Teide-Pico Viejo volcanic complex, Tenerife, Canary Islands. J Petrol 39:905–936

    Article  Google Scholar 

  • Ablay GJ (1997) Evolution of the Teide-Pico Viejo complex and magma system, Tenerife, Canary Islands. Dissertation. University of Bristol, Bristol

  • Ablay GJ, Ernst GGJ, Martí J, Sparks RSJ (1995) The 2 ka subplinian eruption of Montaña Blanca, Tenerife. Bull Volcanol 57:337–355

    Google Scholar 

  • Alfano F, Bonadonna C, Volentik ACM, Connor CB, Watt SFL, Pyle DM, Connor LJ (2010) Tephra stratigraphy and eruptive volume of the May, 2008, Chaitén eruption, Chile. Bull Volcanol 73:613–630. doi:10.1007/s00445-010-0428-x

    Article  Google Scholar 

  • Ancochea E, Huertas MJ, Fuster JM, Cantagrel JM, Coello J, Ibarrola E (1999) Evolution of the Cañadas edifice and its implications for the origin of the Cañadas caldera (Tenerife, Canary Islands). J Volcanol Geotherm Res 88:177–199

    Article  Google Scholar 

  • Araña V (1971) Litología y estructura del edificio Cañadas, Tenerife (Islas Canarias). Est Geol 27:95–135

    Google Scholar 

  • Bonadonna C, Cioni R, Pistolesi M, Connor CB, Scollo S, Pioli L (2012) Determination of the largest clasts of tephra deposits for the characterization of explosive eruptions: report of the IAVCEI Commission on Tephra Hazard Modelling. Bull Volcanol (submitted). https://vhub.org/resources/870

  • Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40:415–418. doi:10.1130/G32769.1

    Article  Google Scholar 

  • Bonadonna C, Scollo S, Cioni R, Pioli L, Pistolesi M (2011) Determination of the largest clasts of tephra deposits for the characterization of explosive volcanic eruptions. Report of the IAVCEI Commission on Tephra Hazard Modelling

  • Bonadonna C, Houghton BF (2005) Total grain size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456. doi:10.1007/s00445-004-0386-2

    Article  Google Scholar 

  • Bonadonna C, Macedonio G, Sparks RSJ (2002) Numerical modelling of tephra fallout associated with dome collapses and vulcanian explosions: application to hazard assessment on Montserrat. In: Druitt TH, Kokelaar BP (eds) The eruption of Soufrière Hills Volcano, Montserrat, from 1995 to 1999. Geological Society of London, London, pp 517–537

    Google Scholar 

  • Booth B, Croasdale R, Walker GPL (1978) A quantitative study of five thousand years of volcanism on Sao Miguel, Azores. Phil Trans R Soc London A288:271–319

    Google Scholar 

  • Boulesteix T, Hildenbrand A, Soler V, Gillot PY (2012) Eruptive response of oceanic islands to giant landslides: new insights from the geomorphologic evolution of the Teide-Pico Viejo volcanic complex (Tenerife, Canary). Geomorphology 138:61–73. doi:10.1016/j.geomorph.2011.08.025

    Article  Google Scholar 

  • Carey R, Houghton B, Thordarson T (2008) Contrasting styles of welding observed in the proximal Askja 1875 eruption deposits I: Regional welding. J Volcanol Geotherm Res 171:1–19. doi:10.1016/j.jvolgeores.2007.11.020

    Article  Google Scholar 

  • Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125

    Article  Google Scholar 

  • Carracedo JC, Rodríguez-Badiola E, Guillou H et al (2007) Eruptive and structural history of Teide volcano and rift zones of Tenerife, Canary Islands. Geol Soc Am Bull 119:1027–1051. doi:10.1130/B26087.1

    Article  Google Scholar 

  • Carracedo JC, Paterne M, Guillou H et al (2003) Dataciones radiométricas (14C y K/Ar) del Teide y el rift noroeste, Tenerife, Islas Canarias. Est Geol 59:15–29

    Google Scholar 

  • Cioni R, Bertagnini A, Andronico D, Cole PD, Mundula F (2011) The 512 AD eruption of Vesuvius: complex dynamics of a small scale subplinian event. Bull Volcanol 73:789–810. doi:10.1007/s00445-011-0454-3

    Article  Google Scholar 

  • Dingwell DB, Hess KU, Romano C (1998) Extremely fluid behavior of hydrous peralkaline rhyolites. Earth Planet Sci Lett 158:31–38

    Article  Google Scholar 

  • Folch A, Felpeto A (2005) A coupled model for dispersal of tephra during sustained explosive eruptions. J Volcanol Geotherm Res 145:337–349. doi:10.1016/j.jvolgeores.2005.01.010

    Article  Google Scholar 

  • García O, Martí J, Aguirre-Díaz G, Geyer A, Iribarren I (2011) Pyroclastic density currents from Teide-Pico Viejo (Tenerife, Canary Islands): implications on hazard assessment. TerraNova 23:220–224. doi:10.1111/j.1365-3121.2011.01002.x

    Google Scholar 

  • Giordano D, Dingwelll DB, Romano C (2000) Viscosity of a Teide phonolite in the welding interval. J Volcanol Geotherm Res 103:239–245

    Article  Google Scholar 

  • Gottsmann J, Dingwell DB (2001) Cooling dynamics of spatter-fed phonolite obsidian flows on Tenerife, Canary Islands. J Volcanol Geotherm Res 105:323–342

    Article  Google Scholar 

  • Hausen H (1956) Contributions to the geology of Tenerife (Canary Islands). Soc Sci Fennicae Comm Phys-Mat 18:254

    Google Scholar 

  • Houghton B, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462

    Article  Google Scholar 

  • Marrero JM, García A, Llinares A et al (2012) A direct approach to estimating the number of potencial fatalities from an eruption: application to the central volcanic complex of Tenerife Island. J Volcanol Geotherm Res 219–220:33–40. doi:10.1016/j.jvolgeores.2012.01.008

    Article  Google Scholar 

  • Martí J, Sobradelo R, Felpeto A, García O (2011) Eruptive scenarios of phonolitic volcanism at Teide-Pico Viejo volcanic complex (Tenerife, Canary Islands). Bull Volcanol 74:767–782. doi:10.1007/s00445-011-0569-6

    Article  Google Scholar 

  • Martí J, Geyer A, Andujar J, Teixó F, Costa F (2008) Assessing the potential for future explosive activity from Teide-Pico Viejo stratovolcanoes (Tenerife, Canary Islands). J Volcanol Geotherm Res 178:529–542. doi:10.1016/j.jvolgeores.2008.07.011

    Article  Google Scholar 

  • Martí J, Gudmundsson A (2000) The Las Cañadas caldera (Tenerife, Canary Islands): an overlapping collapse caldera generated by magma-chamber migration. J Volcanol Geotherm Res 103:161–173

    Article  Google Scholar 

  • Martí J, Hurlimann M, Ablay GJ, Gudmundson A (1997) Vertical and lateral collapses in Tenerife and other ocean volcanic islands. Geology 25:879–882

    Article  Google Scholar 

  • Martí J, Mitjavila J, Araña V (1994) Stratigraphy, structure and geochronology of the Las Cañadas caldera (Tenerife, Canary Islands). Geol Mag 131:715–717

    Article  Google Scholar 

  • Perez-Torrado FJ, Carracedo JC, Paris R, Hansen A (2004) Descubrimientos de depósitos freatomagmáticos en las calderas septentrionales de estratovolcan Teide (Tenerife, Islas Canarias): relaciones estratigraficas e implicaciones volcánicas. Geotemas 6:163–166

    Google Scholar 

  • Pyle DM (1989) The thickness, volume and grain size of tephra fall deposits. Bull Volcanol 51:1–15

    Article  Google Scholar 

  • Pyle DM (2000) Size of volcanic eruptions. In: Sigurdsson H (ed) Encyclopedia of volcanoes. Academic, London, pp 263–269

    Google Scholar 

  • Reimer PJ, Baillie MGL, Bard E, Bayliss A et al (2004) Radiocarbon 46:1029–1058

    Google Scholar 

  • Thorinsson S, Sigvaldson GE (1972a) The Hekla eruption of 1970. Bull Volcanol 36:269–288

    Article  Google Scholar 

  • Rose WI, Self S, Murrow PJ, Bonadonna C, Durant AJ, Ernst GGJ (2008) Nature and significance of small volume fall deposits at composite volcanoes: insights from the October 14, 1974 Fuego eruption, Guatemala. Bull Volcanol 70:1043–1067

    Article  Google Scholar 

  • Rose WI, Wunderman RL, Hoffman MF, Gale L (1983) A volcanologist's review of atmospheric hazards of volcanic activity: Fuego and Mt St Helens. J Volcanol Geotherm Res 17:133–157

    Article  Google Scholar 

  • Sarna-Wojcicki AM, Shipley S, Waitt JR, Dzurisin D, Wood SH (1981) Areal distribution thickness, mass, volume, and grain- size of airfall ash from the six major eruptions of 1980. US Geol Surv Prof Pap 1250:577–600

    Google Scholar 

  • Scasso R, Corbella H, Tiberi P (1994) Sedimentological analysis of the tephra from 12–15 August 1991 eruption of Hudson Volcano. Bull Volcanol 56:121–132

    Google Scholar 

  • Solana MC, Aparicio A (1998) Reconstruction of the 1706 Montaña Negra eruption. Emergency procedures for Garachico and El Tanque, Tenerife, Canary Islands. In: Firth CR, McGuire WJ (eds) Geol Soc London Spec Pub 161, pp 209–216

  • Soriano C, Zafrilla S, Martí J, Bryan S, Cas R, Ablay G (2002) Welding and rheomorphism of phonolitic fallout deposits from the Las Canadas caldera, Tenerife, Canary Islands. Geol Soc Am Bull 114:883–895

    Article  Google Scholar 

  • Sparks RSJ (1986) The dimensions and dynamics of volcanic eruption columns. Bull Volcanol 48:3–15

    Article  Google Scholar 

  • Sparks RSJ, Wilson L, Sigurdsson H (1981) The pyroclastic deposits of the 1875 eruption of Askja, Iceland. Philos Trans R Soc Lond 299:241–273

    Article  Google Scholar 

  • Szramek L, Gardner J, Larsen J (2006) Degassing and microlite crystallization of basaltic andesite magma erupting at Arenal Volcano, Costa Rica. J Volcanol Geother Res 157:182–201. doi:10.1016/j.volgeores.2006.03.039

    Article  Google Scholar 

  • Thorinsson S, Sigvaldson GE (1972b) The Hekla eruption of 1970. Bull Volcanol 36:269–288

    Article  Google Scholar 

  • Wilson L, Walker GPL (1987) Explosive volcanic eruptions—VI. Ejecta dispersal in plinian eruptions: the control of eruption conditions and atmospheric properties. Geophys J R Astr Soc 89:657–679

    Article  Google Scholar 

  • Wright HMN, Cashman KV, Rosi M, Cioni R (2006) Breadcrust bombs as indicators of vulcanian eruptions at Guagua Pichincha volcano, Ecuador. Bull Volcanol 69:281–300. doi:10.1007/s00445-006-0073-6

    Article  Google Scholar 

Download references

Acknowledgments

This research has been partially funded with MICINN grant CGL2008-04264 and the IGN-CSIC collaboration agreement for the study of Tenerife volcanism. The authors are grateful to the National Park of Teide for giving us permission to undertake this research and Cabildo of Tenerife for giving us FYF 412/10 permission. They are also grateful to David Moure, Dario Pedrazzi, Ilazkiñe Iriberren, Natividad Luengo, Stavros Meletlidis, Pedro Torres, Stephanie Barde-Cabusson, Victor Cabrera and all the staff working at the Geophysics Centre of Canarias for their support during the field campaigns, including the staff working in the Central Geophysics Observatory (IGN). They also thank Agathe Martignier of the Department of Mineralogy of University of Geneva (Switzerland) for assistance with the SEM analyses, and Sebastien Biass helped in processing the NOAA wind data. This paper greatly benefited from editorial handling by S. De la Cruz and careful reviews of two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaya García.

Additional information

Editorial responsibility: S. De la Cruz-Reyna

Rights and permissions

Reprints and Permissions

About this article

Cite this article

García, O., Bonadonna, C., Martí, J. et al. The 5,660 yBP Boquerón explosive eruption, Teide–Pico Viejo complex, Tenerife. Bull Volcanol 74, 2037–2050 (2012). https://doi.org/10.1007/s00445-012-0646-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0646-5

Keywords

  • Teide
  • Explosive volcanism
  • Tephra deposits
  • Hazard assessment