Skip to main content

An eruptive history of Maderas volcano using new 40Ar/39Ar ages and geochemical analyses

Abstract

Maderas volcano is a small, andesitic stratovolcano located on the island of Ometepe in Lake Nicaragua, Nicaragua, with no record of historic activity. Twenty-one samples were collected in 2010 from lava flows of Maderas. The selected samples were analyzed for whole-rock geochemistry using ICP-AES and/or were dated using the 40Ar/39Ar method. The results of these analyses were combined with previously collected data from Maderas as well as field observations to determine the eruptive history of the volcano and create a geologic map. The results of the geochemical analyses indicate that Maderas has higher concentrations of alkalies than most Nicaraguan and Costa Rican volcanoes including its nearest neighbor, Concepción volcano. It is also different from Concepción in that it displays higher incompatible elements. Determined age dates range from 179.2 ± 16.4 ka to 70.5 ± 6.1 ka. Based on these ages and the geomorphology of the volcano which is characterized by a bisecting graben, it is proposed that Maderas experienced two generations of development: initial build-up of the older cone including pre-graben lava flows, followed by post-graben lava flows. The ages also indicate that Maderas is markedly older than Concepción which is historically active. Volcanic hazards were also assessed. The 40Ar/39Ar ages indicate that Maderas has likely been inactive for tens of thousands of years and future volcanic eruptions are not considered an immediate hazard. However, earthquake and lahar hazards exist for the communities around the volcano. The steep slopes of the eroded older cone are the most likely sources of lahar hazards.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Alvarado GE, Carr MJ, Turrin BD, Swisher CC, Schmincke H-U, Hudnut KW (2006) Recent volcanic history of Irazú volcano, Costa Rica: alternation and mixing of two magma batches, and pervasive mixing. In: Rose WI, Bluth GJS, Carr MJ, Ewert J, Patino LC, Vallance J (eds) Volcanic hazards in Central America. Geol Soc Am Spec Pap 412:259–276. doi:10.1130/2006.2412(14)

  2. Anderson T (1908) The volcanoes of Guatemala. Geogr J 31(5):473–485

    Article  Google Scholar 

  3. Bardintzeff J-M, Deniel C (1992) Magmatic evolution of Pacaya and Cerro Chiquito volcanological complex, Guatemala. Bull Volcanol 54:267–283

    Article  Google Scholar 

  4. Bolge LL, Carr MJ, Milidakis KI, Lindsay FN, Feigenson MD (2009) Correlating geochemistry, tectonics, and volcanic volume along the Central American volcanic front. Geochem Geophys Geosys 10 Q12S18. doi:10.1029/2009GC002704

  5. Borgia A, van Wyk de Vries B (2003) The volcano-tectonic evolution of Concepción, Nicaragua. Bull Volcanol 65(4):248–266. doi:10.1007/s00445-002-0256-8

    Article  Google Scholar 

  6. Borgia A, Delaney PT, Denlinger RP (2000) Spreading volcanoes. Annu Rev Earth Planet Sci 28:539–570. doi:10.1146/annurev.earth.28.1.539

    Article  Google Scholar 

  7. Carr MJ, Rose WI (1987) CENTAM—a data base of Central American volcanic rocks. J Volcanol Geotherm Res 33(1–3):239–240. doi:10.1016/0377-0273(87)90066-7

    Article  Google Scholar 

  8. Carr MJ, Rose WI, Stoiber RE (1982) Central America. In: Thorpe RS (ed) Andesites: orogenic andesites and related rocks. Wiley, New York, pp 149–166

    Google Scholar 

  9. Carr MJ, Feigenson MD, Patino LC, Walker JA (2003) Volcanism and geochemistry in Central America: progress and problems. In Eiler J (ed) Inside the subduction factory. Geophys Monogr Ser 138:153–174. doi:10.1029/138GM09

  10. Carr MJ, Patino LC, Feigenson MD (2007a) Petrology and geochemistry of lavas (Chapter 22). In: Bundschuh J, Alvarado GE (eds) Central America: geology, resources and hazards. Taylor & Francis, London, pp 565–590. doi:10.1201/9780203947043.ch22

  11. Carr MJ, Saginor I, Alvardo GE, Bolge LL, Lindsay FN, Milidakis K, Turrin BD, Feigenson MD, Swisher CC (2007b) Element fluxes from the volcanic front of Nicaragua and Costa Rica. Geochem Geophys Geosyst 8:Q06001. doi:10.1029/2006CG001396

    Article  Google Scholar 

  12. de Boer J (1979) The outer arc of the Costa Rican orogen (oceanic basement complexes of the Nicoya and Santa Elena Peninsulas). Tectonophysics 56(3–4):221–259. doi:10.1016/0040-1951(79)90084-2

    Article  Google Scholar 

  13. Delcamp A, van Wyk de Vries B, James MR (2008) The influence of edifice slope and substrata on volcano spreading. J Volcanol Geotherm Res 177(4):925–943. doi:10.1016/j.jvolgeores.2008.07.014

    Article  Google Scholar 

  14. DeMets C (2001) A new estimate for present-day Cocos–Caribbean plate motion: implications for slip along the Central American volcanic arc. Geophys Res Lett 28(21):4043–4046

    Article  Google Scholar 

  15. Denyer P, Baumgartner PO (2006) Emplacement of Jurassic–Lower Cretaceous radiolarites of the Nicoya Complex (Costa Rica). Geol Acta 4(1–2):203–218

    Google Scholar 

  16. Diez M, Connor C, Navarro M, Strauch W, Tenorio V, Tenorio L, Aviles R (2006) Volcanic hazards at Concepcion volcano, Nicaragua, and recommendations for hazard mitigation. Prepared for the US Southern Command

  17. Escobar-Wolf RP, Diehl JF, Singer BS, Rose WI (2010) 40Ar/39Ar and paleomagnetic constraints on the evolution of Volcán de Santa María, Guatemala. Geol Soc Am Bull 122(5–6):757–771. doi:10.1130/B26569.1

    Article  Google Scholar 

  18. Freundt A, Strauch W, Kutterolf S, Schmincke H-U (2007) Volcanogenic tsunamis in lakes: examples from Nicaragua and general implications. Pure Appl Geophys 164(2–3):527–545. doi:10.1007/s00024-006-0178-z

    Article  Google Scholar 

  19. Funk J, Mann P, McIntosh K, Stephens J (2009) Cenozoic tectonics of the Nicaraguan depression, Nicaragua, and Median Trough, El Salvador, based on seismic-reflection profiling and remote-sensing data. Geol Soc Am Bull 121(11–12):1491–1521. doi:10.1130/B26428.1

    Article  Google Scholar 

  20. Grosse P, van Wyk de Vries B, Petrinovic IA, Euillades PA, Alvarado GE (2009) Morphometry and evolution of arc volcanoes. Geology 37(7):651–654. doi:10.1130/G25734A.1

    Article  Google Scholar 

  21. Hoernle K, Hauff F, van den Bogaard P (2004) 70 m.y. history (139–69 Ma) for the Caribbean large igneous province. Geology 32(8):697–700. doi:10.1130/G20574.1

    Article  Google Scholar 

  22. Koppers AP (2002) ArArCALC-software for 40Ar/39Ar age calculations. Comput Geosci 28(5):605–619. doi:10.1016/S0098-3004(01)00095-4

    Article  Google Scholar 

  23. Kuiper KF, Deino A, Hilgen FJ, Krijgsman W, Renne PR, Wijbrans JR (2008) Synchronizing rock clocks of Earth history. Science 320(5875):500–504. doi:10.1126/science.1154339

    Article  Google Scholar 

  24. Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(3):745–750. doi:10.1093/petrology/27.3.745

    Google Scholar 

  25. Lindsay FN (2009) Geochemistry of lavas from southeastern Nicaragua and of mantle xenoliths from Cerro Mercedes, Costa Rica. Dissertation, Rutgers, The State University of New Jersey, New Brunswick

  26. MacKenzie L, Abers GA, Fischer KM, Syracuse EM, Protti JM, Gonzalez V, Strauch W (2008) Crustal structure along the southern Central American volcanic front. Geochem Geophys Geosyst 9(8):Q08S09. doi:10.1029/2008GC001991

    Article  Google Scholar 

  27. Mathieu L (2010) The impact of strike–slip movements on the structure of volcanoes: a case study of Guadeloupe, Maderas and Mt. Cameroon volcanoes. Dissertation, Trinity College, Dublin

  28. Mathieu L, van Wyk de Vries B, Pilato M, Troll VR (2011) The interaction between volcanoes and strike–slip, transtensional and transpressional fault zones: analogue models and natural examples. J Struct Geol 33(5):898–906. doi:10.1016/j.jsg.2011.03.003

    Article  Google Scholar 

  29. McBean G (2004) Climate change and extreme weather: a basis for action. Nat Hazards 31(1):177–190. doi:10.1023/B:NHAZ.0000020259.58716.0d

    Article  Google Scholar 

  30. McBirney AR, Williams H (1965) Volcanic history of Nicaragua. University of California Press, Berkeley, p 73

    Google Scholar 

  31. Min K, Mundil R, Renne PR, Ludwig KR (2000) A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.1-Ga rhyolite. Geochim Cosmochim Acta 64(1):73–98. doi:10.1016/S0016-7073(99)00204-5

    Article  Google Scholar 

  32. Saginor I, Gazel E, Carr MJ, Swisher CC III, Turrin B (2011) New Pliocene–Pleistocene 40Ar/39Ar ages fill in temporal gaps in the Nicaraguan volcanic record. J Volcanol Geotherm Res 202:143–152. doi:10.1016/j.jvolgeores.2011.02.002

    Article  Google Scholar 

  33. Sebesta J (2001) Análisis de origen dinámico del relieve, Isla de Ometepe. Czech Geologic Service, Prague, Czech Republic

  34. Siebert L, Simkin T, Kimberly P (2010) Volcanoes of the World. University of California Press, Berkeley, p 551

    Google Scholar 

  35. Singer BS, Smith KE, Jicha BR, Beard BL, Johnson CM, Rogers NW (2011) Tracking open-system differentiation during growth of Santa María volcano, Guatemala. J Petrol 52(12):2335–2363. doi:10.1093/petrology/egr047

    Article  Google Scholar 

  36. Smithsonian Institution (1996) Maderas. Bull Glob Volcanism Netw, 21(09)

  37. Syracuse EM, Abers GA (2006) Global compilation of variations in slab depth beneath arc volcanoes and implications. Geochem Geophys Geosyst 7:Q05017. doi:10.1029/2005GC001045

    Article  Google Scholar 

  38. Vallance JW, Schilling SP, Matías O, Rose WI, Howell MM (2001) Volcano hazards at Fuego and Acatenango, Guatemala. US Geological Survey Open-File Report 01–431, Denver

  39. van Wyk de Vries B (1986) Mapa Geologico Isla de Ometepe. Instituto Nicaraguense de Estudios Terretoriales (INETER), Managua

    Google Scholar 

  40. van Wyk de Vries B (1993) Tectonics and magma evolution of Nicaraguan volcanic systems. Dissertation, The Open University

  41. van Wyk de Vries B, Borgia A (1996) The role of basement in volcano deformation. Geol Soc Spec Publ 110:95–110. doi:10.1144/GSL.SP.1996.110.01.07

    Article  Google Scholar 

  42. Wilder PR (2010) Concepción está en plena erupción. Grupo Editorial La Prensa. Managua, Nicaragua. http://www.laprensa.com.ni/2010/03/19/nacionales/19551. Accessed 28 February 2012

Download references

Acknowledgments

This study was supported by US National Science Foundation PIRE Grant #0530109. The costs of the first author’s time in the field at Maderas were paid by the US Peace Corps. We thank Lucie Mathieu for allowing us to use samples that she collected from Maderas and Ben van Wyk de Vries for sharing his expertise of Nicaraguan volcanoes and chemical analyses of many samples from Ometepe. Heather Cunningham is thanked for her support in preparing the samples for 40Ar/39Ar analysis.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Lara Kapelanczyk.

Additional information

Editorial responsibility: J.E. Gardner

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 86 kb)

ESM 2

(DOC 122 kb)

ESM 3

(DOC 128 kb)

ESM 4

(XLS 198 kb)

ESM 5

(XLS 198 kb)

ESM 6

(XLS 207 kb)

ESM 7

(XLS 198 kb)

ESM 8

(XLS 204 kb)

ESM 9

(XLS 303 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kapelanczyk, L., Rose, W.I. & Jicha, B. An eruptive history of Maderas volcano using new 40Ar/39Ar ages and geochemical analyses. Bull Volcanol 74, 2007–2021 (2012). https://doi.org/10.1007/s00445-012-0644-7

Download citation

Keywords

  • 40Ar/39Ar dating
  • Eruptive history
  • Volcano
  • Maderas