Skip to main content

Stratigraphy, geochronology and evolution of the Mt. Melbourne volcanic field (North Victoria Land, Antarctica)

Abstract

Mt. Melbourne (2,732 m a.s.l.) is a large quiescent stratovolcano located in Northern Victoria Land (Antarctica) and is one of a handful of volcanoes on the Antarctic plate with the potential for large-scale explosive eruptions. During the XVIII Italian Expedition in 2002–2003, the Mt. Melbourne volcanic succession was studied in terms of stratigraphy and sampled for 40Ar/39Ar age determinations and geochemistry. The early, Lower Pleistocene, volcanism was largely alkali basaltic to hawaiitic in composition and monogenetic in style, producing tens of small scoria cones and lava flows scattered over a wide area across the Transantarctic Mountains (Random Hills Period). During the Middle Pleistocene, volcanic activity focused to the area of the Mt. Melbourne stratovolcano, where several monogenetic centres show the transition from early sub-glacial/subaqueous conditions to emergent subaerial conditions (Shield Nunatak Period). The oldest exposed deposit associated with the early activity of the Mt. Melbourne stratovolcano (Mt. Melbourne Period) is a trachytic subaerial ignimbrite dated at 123.6 ± 6.0 ka, which reflects the establishment of a crustal magma chamber. Above the ignimbrite a succession of alkali basaltic, hawaiitic, and subordinate benmoreitic lavas and scoria cones is exposed, dated at 90.7 ± 19.0 ka. The Holocene deposits are exposed at the top of Mt. Melbourne, where the crater rim is composed of trachytic to rhyolitic pumice fall deposits, which are also extensively dispersed around the volcano, likely originated from Plinian-scale eruptions. The most recent explosive deposit proved difficult to date accurately because very low quantities of radiogenic 40Ar were released, resulting in imprecise plateau ages of 50 ± 70 and 35 ± 22 ka.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • Antonini P, Civetta L, Orsi G, Piccirillo EM, Bellieni G (1994) The Mount Melbourne and Mount Overlord subprovinces of the McMurdo Volcanic Group (Northern Victoria Land–Antarctica): new geochemical and Sr-isotope data. Terra Antarct 1(1):115–119

    Google Scholar 

  • Argentini S, Del Buono P, Della Vedova AM, Mastrantonio G (1995) A statistical analysis of wind in TerraNovaBay, Antarctica, for the austral summers 1988 and 1989. Atmos Res 39(1–3):145–156

    Article  Google Scholar 

  • Armienti P, Tripodo A (1991) Petrologicaphy and chemistry of lavas and comagmatic xenoliths of Mt. Rittmann, a volcano discovered during the IV Italian Expedition in Northern Victoria Land (Antarctica). Mem Soc Geol Ital 46:427–452

    Google Scholar 

  • Armienti P, Civetta L, Innocenti F, Manetti P, Tripodo A, Villari L, De Vita G (1991) New petrological and geochemical data on Mt. Melbourne volcanic Field, Northern Victoria Land Antarctica (II Italian Antarctic Expedition). Mem Soc Geol Ital 46:397–424

    Google Scholar 

  • Armstrong RL (1978) K-Ar dating: Late Cenozoic McMurdo Volcanic Group and dry valley glacial history, Victoria Land, Antarctica: New Zealand. J Geol Geophys 21:685–698

    Article  Google Scholar 

  • Baroni C, Orombelli G (1994) Abandoned penguin rookeries as Holocene paleoclimatic indicators in Antarctica. Geology 22(1):23–26

    Article  Google Scholar 

  • Beccaluva L, Coltorti M, Orsi G, Saccani A, Siena F (1991a) Nature and evolution of the sub-continental litospheric mantle of Antarctica: evidence from ultramafic xenoliths of the Melbourne Volcanic Province (Northern Victoria Land, Antarctica). Mem Soc Geol Ital 46:353–370

    Google Scholar 

  • Beccaluva L, Civetta L, Coltorti M, Orsi G, Saccani E, Siena F (1991b) Basanite to tephrite lavas from Melbourne Volcanic Province, Victoria Land, Antarctica. Mem Soc Geol Ital 46:383–395

    Google Scholar 

  • Behrendt JC (1999) Crustal and lithospheric structure of the West Antarctic Rift System from geophysical investigations—a review. Glob Planet Chang 23:25–44

    Article  Google Scholar 

  • Bellieni G, Justin Visentin E, Le Maitre RW, Piccirillo EM and Zanettin B (1983) Proposal for a division of the basaltic (B) field of the TAS diagram. IUGS subcommission on the Systematics of Igneous Rocks. Circular no.38, Contribution no.102

  • Bonnefoi CC, Provost A, Albarède F (1995) The “Daly gap” as a magmatic catastrophe. Nature 378:270–272

    Article  Google Scholar 

  • Brandelik A (2009) CALCMIN—an EXCEL™ Visual Basic application for calculating mineral structural formulae from electron microprobe analyses. Comput Geosci 35:1540–1551

    Article  Google Scholar 

  • Branney MJ and Kokelaar P (2002) Pyroclastic density currents and the sedimentation of ignimbrites. In: Branney M.J. & Kokelaar: (eds) Pyroclastic density currents and the sedimentation of ignimbrite Geol Soc Mem 27: 1–138

  • Bromwich DH, Parish TR, Zorman CA (1990) The confluence zone of intense catabatic winds at Terra Nova Bay, Antarctica, as derived from airborne Sastrugi surveys and mesoscale numerical modeling. J Geophys Res 95:5495–5509

    Article  Google Scholar 

  • Carey S, Sigurdsson H (1987) The eruption of Vesuvius in A.D. 79: II. Variation in column height and discharge rate. Geol Soc Am Bull 99(2):303–314

    Article  Google Scholar 

  • Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125

    Article  Google Scholar 

  • Cas RAF (1992) Submarine volcanism: eruption styles, products, and relevance to understanding the host rock successions to volcanic-hosted massive sulfide deposits. Econ Geol 87(511):541

    Google Scholar 

  • Cas RAF, Wright JV (1987) Volcanic successions: modern and ancient. Chapman & Hall, London, p 528

    Book  Google Scholar 

  • Cremisini C, Gianelli G, Mussi M, Torcini S (1991) Geochemistry and isotope chemistry of surface waters and geothermal manifestations at Terra Nova Bay (Victoria Land, antartica). Mem Soc Geol Ital 46:463–475

    Google Scholar 

  • D’Amico C, Innocenti F and Sassi FP (1989) Magmatismo e Metamorfismo, Utet, 536p

  • Di Nicola L, Strasky S, Schlüchter C, Salvatore MC, Akçar N, Kubik PW, Christl M, Kasper HU, Wieler R, Baroni C (2009) Multiple cosmogenic nuclides document complex Pleistocene exposure history of glacial drifts in Terra Nova Bay (northern Victoria Land, Antarctica). Quat Res 71:83–92

    Article  Google Scholar 

  • Dunbar NW, McIntosh WC, Esser RP (2008) Physical setting and tephrochronology of the summit caldera ice record at Mount Moulton, West Antarctica. Geol Soc Am Bull 120:796–812. doi:10.1130/B26140.1

    Article  Google Scholar 

  • Fitzgerald PG, Sandford M, Barrett PJ, Gleadow AJW (1987) Asymmetric extension associated with uplift and subsidence in the Transantarctic Mountains and Ross Embayment. Earth Planet Sci Lett 81:67–78

    Article  Google Scholar 

  • Harrington HJ (1958) Nomenclature of rock units in the Ross Sea Region, Antarctica. Nature 182(4631):290

    Article  Google Scholar 

  • Hornig I, Wörner G, Zipfel J (1991) Lower crustal and mantle xenoliths from the Mt. Melbourne Volcanic Field, Northern Victoria Land, Antarctica. Mem Soc Geol Ital 46:337–352

    Google Scholar 

  • Irvine TN, Baragar WRA (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    Article  Google Scholar 

  • Jacobs SS (1992) Is the Antarctic sheet growing? Nature 360:29–33

    Article  Google Scholar 

  • Keys JR, McIntosh WC, Kyle PR (1983) Volcanic activity of Mount Melbourne, Northern Victoria Land. Antarct J US 18:10–11

    Google Scholar 

  • Kuno H (1966) Lateral variation of basalt magma types across continental margins and island arcs. Bull Volcanol 29:195–222

    Article  Google Scholar 

  • Kyle PR (1990a) Melbourne Volcanic Province. In: LeMasurier WE and Thmson JW (eds), 1990. Volcanoes of the Antarctic plate and southern oceans. Am Geophys Union, Antarct Res Series 48: 48–52

  • Kyle PR (1990b) McMurdo Volcanic Group, Western Ross Embayment. In: LeMasurier WE and Thmson JW (eds), 1990. Volcanoes of the Antarctic Plate and Southern Oceans. Am Geophys Union, Antarct Res Series 48: 19–145

  • Kyle PR, Cole JW (1974) Strucutral controls of volcanism in the McMurdo volcanic Group, McMurdo Sound, Antarctica. Bull Volcanol 38:16–35

    Article  Google Scholar 

  • Lanzafame G, Villari L (1991) Structural evolution and volcanism in Northern Victoria Land (Antarctica): data from Mt. Melbourne–Mt. Overlord–Malta Plateau Region. Mem Soc Geol Ital 46:371–381

    Google Scholar 

  • Le Bas MJ, Streckeisen A (1991) The IUGS systematics of igneous rocks. J Geol Soc Lond 148:825–833

    Article  Google Scholar 

  • Le Bas MJ, LeMaitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27:745–750

    Google Scholar 

  • LeMaitre RW (ed) (2002) Igneous rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences. Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge

  • LeMasurier WE and Thomson JW (eds) (1990) Volcanoes of the Antarctic plate and southern oceans. Am Geophys Union, Antarct Res Series 48:512

  • Lesti C, Giordano G, Salvini F, Cas R (2008) Volcano tectonic setting of the intraplate, Pliocene–Holocene, Newer Volcanic Province (southeast Australia): role of crustal fracture zones. J Geophys Res 113:B07407. doi:10.1029/2007JB005110

    Article  Google Scholar 

  • Lyon GL (1986) Stable isotope stratigraphy of ice cores and the age of the last eruption at Mt.Melbourne, Antarctica. NZJ Geol Geophys 29(1):135–138

    Article  Google Scholar 

  • Lyon GL, Giggenbach WF (1974) Geothermal activity in Victoria Land, Antarctica. NZ J Geol Geophys 17:511–521

    Article  Google Scholar 

  • Martin A, Cooper A, Dunlap W (2010) Geochronology of Mount Morning, Antarctica: two-phase evolution of a long-lived trachyte–basanite–phonolite eruptive center. Bull Volcanol 72(3):357–371

    Article  Google Scholar 

  • Matchan E, Phillips D (2011) New 40Ar/39Ar ages for selected young (<1 Ma) basalt flows of the Newer Volcanic Province, southeastern Australia. Quat Geochronol 6:356–358

    Article  Google Scholar 

  • McPhie J, Doyle M and Allen R (1993) Volcanic textures: a guide to the interpretation of textures in volcanic rocks. Centre for Ore Deposit and Exploration Studies, University of Tasmania, 198 p

  • Min K, Mundil R, Renne PR, Ludwig KR (2000) A test for systematic errors in 40Ar/39Ar geochronology through comparison with U–Pb analysis of a 1.1 Ga rhyolite. Geochim Cosmochim Acta 64:73–98

    Article  Google Scholar 

  • Müller P, Schmidt-Thome M, Kreuzer H, Tessensohn F, Vetter U (1991) Cenozoic Peralkaline magmatism at the western margin of the Ross Sea, Antarctica. Mem Soc Geol Ital 46:315–336

    Google Scholar 

  • Nathan S, Schulte FJ (1967) Recent thermal and volcanic activity on the Mt. Melbourne, Northern Victoria Land, Antarctica. NZ J Geol Geophys 10:422–430

    Article  Google Scholar 

  • Nathan S, Schulte FJ (1968) Geology and petrology of the Campbell–Aviator Divide, Northern Victoria Land, Antarctica. Part I: Post Paleozoic rocks. NZ J Geol Geophys 11:940–975

    Article  Google Scholar 

  • Oppenheimer C (2003) Climatic, environmental and human consequences of the largest known historic eruption: Tambora volcano (Indonesia) 1815. Prog Phys Geogr 27:230–259

    Article  Google Scholar 

  • Orombelli G, Baroni C, Denton GH (1991) Late Cenozoic galcial history of the Terra Nova Bay region, Northern Victoria Land, Antarctica. Geogr Fis Dinamica Quaternaria 13:139–163

    Google Scholar 

  • Pfeiffer T, Costa A, Macedonio G (2005) A model for the numerical simulation of tephra fall deposits. J Volcanol Geotherm Res 140:273–294

    Article  Google Scholar 

  • Phillips G, Wilson CJL, Phillips D, Szczepanski S (2007) Thermochronological (40Ar/39Ar) evidence for Early Palaeozoic basin inversion within the southern Prince Charles Mountains, East Antarctica: implications for East Gondwana. J Geol Soc 164:771–784

    Article  Google Scholar 

  • Renne PR, Swisher CC, Deino AL, Karner DB, Owens TL, DePaolo DJ (1998) Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chem Geol 145:117–152

    Article  Google Scholar 

  • Renne PR, Mundil R, Balco G and Min K (2009) Simultaneous determination of 40 K decay constants and age of the Fish Canyon sanidine 40Ar/39Ar standard. GSA Annual Meeting, Portland, abstract 160–3

  • Rocchi S, Storti F, Di Vincenzo G, and Rossetti F (2003) Intraplate strike-slip tectonics as an alternative to mantle plume activity for the Cenozoic rift magmatism in the Ross Sea region, Antarctica: in Storti, F, Holdsworth, R.E. and Salvini, F. (eds), Intraplate Strike-Slip Deformation Belts, Geol Soc London, Special Publication 210: 145–158

  • Rossetti F, Storti F, Salvini F (2000) Cenozoic non-coaxial transtension along the western shoulder of the Ross Sea, Antarctica, and the emplacement of McMurdo dyke arrays. Terra Nova 12:60–66

    Google Scholar 

  • Sadler J, Grattan JP (1999) Volcanoes as agents of past environmental change. Glob Planet Chang 21:181–196

    Article  Google Scholar 

  • Salvini F, Brancolini G, Busetti M, Storti F, Mazzarini F, Coren F (1997) Cenozoic geodynamics of the Ross Sea Region, Antarctica: crustal extension, intraplate strike-slip faulting and tectonic inheritance. J Geophys Res 102:24669–24696

    Article  Google Scholar 

  • Smellie JL, Chapman MG (2002) Volcano–ice interaction on Earth and Mars. Geol Soc Lond 202:437, Special Publication

    Google Scholar 

  • Steiger RH, Jager E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36:359–362

    Article  Google Scholar 

  • Stewart DC, Thornton CP (1975) Andesites in oceanic regions. Geology 3:565–568

    Article  Google Scholar 

  • Storti F, Rossetti F, Laufer AL, Salvini F (2006) Consistent kinematic architecture in the damage zones of intraplate strike–slip fault systems in North Victoria Land, Antarctica and implications for fault zone evolution. J Struct Geol 28:50–63

    Article  Google Scholar 

  • Wilch TI, McIntosh WC, Dunbar NW (1999) Late Quaternary volcanic activity in Marie Byrd Land:Potential 40 Ar/39Ar-dated time horizons in West Antarctic ice and marine cores. Geol Soc Am Bull 111(10):1563–1580

    Article  Google Scholar 

  • Wörner G, Orsi G (1990) Volcanic geology of Edmonson Point, Mt. Melbourne Volcanic Field, North Victoria Land, Antarctica. Polarforschung 60(2):84–86

    Google Scholar 

  • Wörner G, Viereck L (1989) The Mt. Melbourne volcanic field (Victoria Land, Antarctica). I Field observations. Geol Jahrb E38:369–393

    Google Scholar 

  • Worner G and Viereck L (1990) Mount Melbourne. In: LeMasurier WE and Thmson JW (eds), 1990, Volcanoes of the Antarctic Plate and Southern Oceans. Am Geophys Union, Antarct Res Series 48: 72–78

  • Wörner G, Viereck L, Hertogen J, Niephaus H (1989) The Mt. Melbourne Field (Victoria Land, Antarctica) II. Geochemistry and magma genesis. Geol Jahrb E38:395–433

    Google Scholar 

  • Wysoczanski RJ, Gamble JA (1992) Xenoliths from the Volcanic Province of West Antarctica and implications for lithospheric structure and processes. In: Yoshida Y, Kaminuma K, Shiraishi K (eds) Recent progress in Antarctic Earth Science. Terra Science Publication, Tokyo, pp 273–277

    Google Scholar 

  • Yavuz F (2007) WinAmphcal: a Windows program for the IMA-04 amphibole classification. Geochem Geophys Geosyst 8:Q01004. doi:10.1029/2006GC001391

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by PNRA 2002–2003 Project 4.4 (coordinator R. Funiciello). The work benefited of comments by J. Gamble and L. Viereck-Gotte on an earlier version and of anonymous reviewers. We also acknowledge J. White and E. Calder for the editorial responsibility. GG thanks P. Pertusati, the alpine guides Palla and Igor and the helicopter pilots Nigel and Steve for the unvaluable and precious help in the field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Giordano.

Additional information

Editorial responsibility: J.D.L. White

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix 1

GPS coordinates of analysed samples (W.R. whole rock] (DOC 88 kb)

Appendix 2

Analytical methods (DOC 30 kb)

Appendix 3

40Ar/39Ar furnace step-heating analytical results for feldspar samples (XLS 857 kb)

Appendix 4

40Ar/39Ar furnace step-heating analytical results for whole-rock samples (XLS 1559 kb)

Appendix 5

Age determinations from literature of deposits surrounding Mt. Melbourne (DOC 37 kb)

Appendix 6

Chemical analyses of major elements for analysed samples. (DOC 283 kb)

Appendix 7

Mineral chemistry of representative phenocrysts, expressed for lithotypes (Bas basanite, Alk-B alkali basalt, Hw hawaiite, Bnm benmoreite, Tr-Rh trachyte–rhyolite). FeOt total iron always expressed as FeO. Cation formula recalculation through CALCMIN (Pl, Afs, Ol, and Cpx) and WINAMPHCAL (Am); a representative plagioclase analyses; b representative alkali-feldspar analyses; c representative olivine analyses; d representative clinopyroxene analyses; e representative amphibole analyses. (DOC 717 kb)

Appendix 8

Selected trace elements data (PDF 407 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Giordano, G., Lucci, F., Phillips, D. et al. Stratigraphy, geochronology and evolution of the Mt. Melbourne volcanic field (North Victoria Land, Antarctica). Bull Volcanol 74, 1985–2005 (2012). https://doi.org/10.1007/s00445-012-0643-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0643-8

Keywords

  • Antarctica
  • Explosive volcanism
  • Geochronology
  • Mt. Melbourne
  • Geochemistry