Abstract
Merapi is an almost persistently active basalt to basaltic andesite volcanic complex in Central Java (Indonesia) and often referred to as the type volcano for small-volume pyroclastic flows generated by gravitational lava dome failures (Merapi-type nuées ardentes). Stratigraphic field data, published and new radiocarbon ages in conjunction with a new set of 40K–40Ar and 40Ar–39Ar ages, and whole-rock geochemical data allow a reassessment of the geological and geochemical evolution of the volcanic complex. An adapted version of the published geological map of Merapi [(Wirakusumah et al. 1989), Peta Geologi Gunungapi Merapi, Jawa Tengah (Geologic map of Merapi volcano, Central Java), 1:50,000] is presented, in which eight main volcano stratigraphic units are distinguished, linked to three main evolutionary stages of the volcanic complex—Proto-Merapi, Old Merapi and New Merapi. Construction of the Merapi volcanic complex began after 170 ka. The two earliest (Proto-Merapi) volcanic edifices, Gunung Bibi (109 ± 60 ka), a small basaltic andesite volcanic structure on Merapi’s north-east flank, and Gunung Turgo and Gunung Plawangan (138 ± 3 ka; 135 ± 3 ka), two basaltic hills in the southern sector of the volcano, predate the Merapi cone sensu stricto. Old Merapi started to grow at ~30 ka, building a stratovolcano of basaltic andesite lavas and intercalated pyroclastic rocks. This older Merapi edifice was destroyed by one or, possibly, several flank failures, the latest of which occurred after 4.8 ± 1.5 ka and marks the end of the Old Merapi stage. The construction of the recent Merapi cone (New Merapi) began afterwards. Mostly basaltic andesite pyroclastic and epiclastic deposits of both Old and New Merapi (<11,792 ± 90 14C years BP) cover the lower flanks of the edifice. A shift from medium-K to high-K character of the eruptive products occurred at ~1,900 14C years BP, with all younger products having high-K affinity. The radiocarbon record points towards an almost continuous activity of Merapi since this time, with periods of high eruption frequency interrupted by shorter intervals of apparently lower eruption rates, which is reflected in the geochemical composition of the eruptive products. The Holocene stratigraphic record reveals that fountain collapse pyroclastic flows are a common phenomenon at Merapi. The distribution and run-out distances of these flows have frequently exceeded those of the classic Merapi-type nuées ardentes of the recent activity. Widespread pumiceous fallout deposits testify the occurrence of moderate to large (subplinian) eruptions (VEI 3–4) during the mid to late Holocene. VEI 4 eruptions, as identified in the stratigraphic record, are an order of magnitude larger than any recorded historical eruption of Merapi, except for the 1872 AD and, possibly, the October–November 2010 events. Both types of eruptive and volcanic phenomena require careful consideration in long-term hazard assessment at Merapi.
This is a preview of subscription content, access via your institution.











References
Alvarado GE, Soto GJ (2002) Pyroclastic flow generated by crater-wall collapse and outpouring of the lava pool of Arenal Volcano, Costa Rica. Bull Volcanol 63:557–568
Andreastuti SD (1999) Stratigraphy and geochemistry of Merapi Volcano, Central Java, Indonesia: implication for assessment of volcanic hazards. PhD thesis, University of Auckland, New Zealand
Andreastuti SD, Alloway BV, Smith IEM (2000) A detailed tephrostratigraphic framework at Merapi Volcano, Central Java, Indonesia: implications for eruption predictions and hazard assessment. J Volcanol Geotherm Res 100:51–67
Bahar I (1984) Contribution à la connaissance du volcanisme indonésien: le Merapi (Centre Java); cadre structural, pétrologie, géochimie et implications volcanologiques. PhD thesis, Université des Sciences et Techniques du Languedoc, Montpellier
Berthommier PC (1990) Etude volcanologique du Merapi (Centre-Java). Téphrostratigraphie et chronologie - produits éruptifs. PhD thesis, Université Blaise Pascal, Clermont-Ferrand
Camus G, Gourgaud A, Mossand-Berthommier P-C, Vincent PM (2000) Merapi (Central Java, Indonesia): an outline of the structural and magmatological evolution, with a special emphasis to the major pyroclastic events. J Volcanol Geotherm Res 100:139–163
Cas RAF, Wright JV (1987) Volcanic successions—modern and ancient. Chapman & Hall, London
Cassignol C, Gillot P-Y (1982) Range and effectiveness of unspiked potassium–argon dating: experimental groundwork and applications. In: Odin GS (ed) Numerical dating in stratigraphy. Wiley, New York, pp 159–179
Charbonnier SJ, Gertisser R (2008) Field observations and surface characteristics of pristine block-and-ash flow deposits from the 2006 eruption of Merapi Volcano, Java, Indonesia. J Volcanol Geotherm Res 177:971–982
Cole PD, Calder ES, Sparks RSJ, Clarke AB, Druitt TH, Young SR, Herd RA, Harford CL, Norton GE (2002) Deposits from dome-collapse and fountain-collapse pyroclastic flows at Soufrière Hills Volcano, Montserrat. In: Druitt TH and Kokelaar BP (eds) The eruption of Soufrière Hills volcano, Montserrat, from 1995 to 1999. Geol Soc Lond Mem 21:231–262
Cole PD, Fernandez E, Duarte E, Duncan AM (2005) Explosive activity and generation mechanisms of pyroclastic flows at Arenal volcano, Costa Rica between 1987 and 2001. Bull Volcanol 67:695–716
Deino A, Potts R (1992) Age-probability spectra for examination of single-crystal 40Ar/39Ar dating results: examples from Olorgesailie, Southern Kenya Rift. Quat Int 13(14):47–53
Del Marmol MA (1989) The petrology and geochemistry of Merapi Volcano, Central Java, Indonesia. PhD thesis, The Johns Hopkins University, Baltimore
Djumarma A, Bronto S, Bahar I, Suparban F, Sukhyar R, Newhall C, Holcomb RT, Banks NG, Torley R, Lockwood JP, Tilling RI, Rubin M, Del Marmol MA (1986) Did Merapi volcano (Central Java) erupt catastrophically in 1006 A.D.? Abstract, IAVCEI Internat Volcanol Congr 1986, Rotorua, p 236
Escher BG (1933a) On a classification of central eruptions according to gas pressure of the magma and viscosity of the lava. Leidsche Geol Med 6:45–49
Escher BG (1933b) On the character of the Merapi eruption in Central Java. Leidsche Geol Med 7:51–59
Gertisser R (2001) Gunung Merapi (Java, Indonesien): Eruptionsgeschichte und magmatische Evolution eines Hochrisiko-Vulkans. PhD thesis, Universität Freiburg, Germany
Gertisser R, Keller J (2000) Distribution, thickness, volume and age of pumiceous tephra-fall deposits from major explosive eruptions of Merapi volcano, Central Java, Indonesia. Mitt Dt Geophys G Sonderb 4:1–6
Gertisser R, Keller J (2003a) Temporal variations in magma composition at Merapi Volcano (Central Java, Indonesia): magmatic cycles during the past 2,000 years of explosive activity. J Volcanol Geotherm Res 123:1–23
Gertisser R, Keller J (2003b) Trace element and Sr, Nd, Pb and O isotope variations in medium-K and high-K volcanic rocks from Merapi Volcano, Central Java, Indonesia: evidence for the involvement of subducted sediments in Sunda Arc magma genesis. J Petrol 44:457–486
Gertisser R, Cassidy NJ, Charbonnier SJ, Nuzzo L, Preece K (2012) Overbank block-and-ash flow deposits and the impact of valley-derived, unconfined flows on populated areas at Merapi volcano, Java, Indonesia. Nat Hazards 60:623–648
Gertisser R, Charbonnier SJ, Troll VR, Keller J, Preece K, Chadwick JP, Barclay J, Herd RA (2011) Merapi (Java, Indonesia): anatomy of a killer volcano. Geol Today 27:57–62
Gillot PY, Cornette Y (1986) The Cassignol technique for potassium–argon dating, precision and accuracy: examples from late Pleistocene to recent volcanics from southern Italy. Chem Geol 59:205–222
Gillot PY, Cornette Y, Max N, Floris B (1992) Two reference materials, trachytes MDO-G and ISH-G, for argon dating (K-Ar and 40Ar/39Ar) of Pleistocene and Holocene rocks. Geostand Newsl 16:55–60
Gillot PY, Hildenbrand A, Lefèvre JC, Albore-Livadie C (2006) The K/Ar dating method: principle, analytical techniques, and application to Holocene volcanic eruptions in Southern Italy. Acta Vulcanol 18:55–66
Gomez C, Janin M, Lavigne F, Gertisser R, Charbonnier S, Lahitte P, Hadmoko SR, Fort M, Wassmer P, Degroot V, Murwanto H (2010) Borobudur, a basin under volcanic influence: 361,000 years BP to present. J Volcanol Geotherm Res 196:245–264
Grandjean JB (1931) Korte mededeeling over de uitbarsting van den Merapi op 18 December 1930. De Mijning 12(1):4–6
Hall ML, Robin C, Beate B, Mothes P, Monzier M (1999) Tungurahua Volcano, Ecuador: structure, eruptive history and hazards. J Volcanol Geotherm Res 91:1–21
Hamilton W (1979) Tectonics of the Indonesian region. US Geol Surv Prof Pap 1078:1–345
Hartmann M (1934a) Der grosse Ausbruch des Vulkanes G. Merapi (Mittel Java) im Jahre 1872. Natuurk Tijdschr Nederl-Indië 94:189–209
Hartmann M (1934b) Die vulkanische Tätigkeit des Merapi Vulkanes (Mittel Java) in seinem östlichen Gipfelgebiete zwischen 1902 und 1908. De Ing Nederl-Indië 5:61–73
Hartmann M (1935a) Die Ausbrüche des G. Merapi (Mittel-Java) bis zum Jahre 1883. Neues Jahrb Mineral Geol Paläontol 75:127–162
Hartmann M (1935b) Die große Ausbruchsperiode des Merapi im 2. Halbjahr 1934. Zeitschr Vulkanol 16:199–205
Hartmann M (1936) Die Lavadomgebilde des Merapi (M.J.) nach dem grossen Ausbruch im Jahre 1930. Zeitschr Vulkanol 16:248–258
Junghuhn FW (1853–1854) Java, deszelfs gedaante, Bekleeding en Inwendige Structuur, 2nd edn. Uitgave CW Mieling, s’Gravenhage, pp 417–465
Kemmerling GLL (1921) De hernieuwde werking van den vulkan G. Merapi (Midden Java) van den begin Augustus 1920 tot en met einde Februari 1921. Vulkanol Seismol Med 3:1–30
Lavigne F, Thouret JC, Voight B, Suwa H, Sumaryono A (2000) Lahars at Merapi volcano, central Java: an overview. J Volcanol Geotherm Res 100:423–456
Le Maitre RW (ed), Streckeisen A, Zanettin B, Le Bas MJ, Bonin B, Bateman P, Bellieni G, Dudek A, Efremova J, Keller J, Lameyre J, Sabine PA, Schmidt R, Sørensen H, Woolley AR (2002) Igneous rocks. A classification and glossary of terms. Recommendations of the International Union of Geological Sciences Subcommission on the systematics of igneous rocks. University Press, Cambridge
Le Pennec J-L, Jaya D, Samaniego P, Ramón P, Moreno Yánez S, Egred J, van der Plicht J (2008) The AD 1300–1700 eruptive periods at Tungurahua volcano, Ecuador, revealed by historical narratives, stratigraphy and radiocarbon dating. J Volcanol Geotherm Res 176:70–81
McCormac FG, Hogg AG, Blackwell PG, Buck CE, Higham TFG, Reimer PJ (2004) SHCal04 Southern Hemisphere Calibration 0–1000 cal BP. Radiocarbon 46:1087–1092
Miyabuchi Y, Watanabe K, Egawa Y (2006) Bomb-rich basaltic pyroclastic flow deposit from Nakadake, Aso Volcano, southwestern Japan. J Volcanol Geotherm Res 155:90–103
Moore J, Melson WG (1969) Nuées ardentes of the 1968 eruption of Mayon Volcano, Philippines. Bull Volcanol 33:600–620
Neumann van Padang M (1933) De Uitbarsting van den Merapi (Midden Java) in den Jaren 1930–1931. Vulkanol Seismol Med 12:1–117
Neumann van Padang M (1936) Die Tätigkeit des Merapi-Vulkans (Mittel-Java) in den Jahren 1883–1888. Zeitschr Vulkanol 17:93–113
Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:1231–1238
Newhall CG, Bronto S, Alloway B, Banks NG, Bahar I, Del Marmol MA, Hadisantono RD, Holcomb RT, McGeehin J, Miksic JN, Rubin M, Sayudi SD, Sukhyar R, Andreastuti S, Tilling RI, Torley R, Trimble D, Wirakusumah AD (2000) 10,000 years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications. J Volcanol Geotherm Res 100:9–50
Odin GS et al (1982) Interlaboratory standards for dating purposes. In: Odin GS (ed) Numerical dating in stratigraphy. Wiley, Chichester, pp 123–150
Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15
Quidelleur X, Gillot PY, Soler V, Levèvre JC (2001) K/Ar dating extended into the last millennium: application to the youngest effusive episode of the Teide volcano (Canary Islands, Spain). Geophys Res Lett 28:3067–3070
Reck H (1931) Der Merapi-Vulkan auf Java und sein Ausbruch im Dezember 1930. Naturwiss 19:369–373
Reck H (1935) Der Ausbruchscyklus des Merapi in den Jahren 1933/34. Naturwiss 48:812–816
Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand CJH, Blackwell PG, Buck CE, Burr GS, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hogg AG, Hughen KA, Kromer B, McCormac G, Manning S, Ramsey CB, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2004) IntCal04 Terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46:1029–1058
Siebert L, Simkin T, Kimberly P (2011) Volcanoes of the world. University of California Press, Berkeley
Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo and cosmochronology. Earth Planet Sci Lett 36:359–362
Stuiver M, Polach HA (1977) Discussion. Reporting of 14C data. Radiocarb 19:355–363
Stuiver M, Reimer PJ (1993) Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35:215–230
Stuiver M, Reimer PJ, Reimer RW (2005) CALIB 5.0 [WWW program and documentation]
Taverne NJM (1925) G. Merapi in 1924. Natuurk Tijdschr Nederl-Indië 85:137–149
Taverne NJM (1933) De G. Merapi (Midden-Java) in 1922. Vulkanol Ber XXI-XXIX:2–26
Van Bemmelen RW (1949) The geology of Indonesia, vol 1A: General Geology. GPO, The Hague
Van Bemmelen RW (1956) The influence of geologic events on human history (an example from Central Java). Verh Kon Ned Geol Mijnb Genoot Geol 16:20–36
Van Boekhold F (1792) Relaas van een togt naar den Brandenden berg op Java, 17/18 juli 1786. Verh Bataviaasch Genoot Kunsten Wet 6:8–12 (2nd edn in 1827)
Venzke E, Wunderman R W, McClelland L, Simkin T, Luhr JF, Siebert L, Mayberry G, Sennert S (eds) (2002) Global volcanism, 1968 to the present. Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-4 (http://www.volcano.si.edu/reports/). Accessed 1 Oct 2011
Verbeek RDM, Fennema R (1896) Geologische beschrijving van Java and Madoera. Two volumes and a folio with maps and sections. Amsterdam, pp 302–305, 319–322, 347–348, 947, 950, 957
Voight B, Constantine EK, Siswowidjoyo S, Torley R (2000) Historical eruptions of Merapi volcano, Central Java, Indonesia, 1768–1998. J Volcanol Geotherm Res 100:69–138
Wirakusumah AD, Juwarna H, Loebis H (1989) Peta Geologi Gunungapi Merapi, Jawa Tengah (Geologic map of Merapi volcano, Central Java), 1:50,000
Acknowledgments
We gratefully acknowledge our colleagues at the Merapi Volcano Observatory (BPPTK) in Yogyakarta for their generosity and support over many years. Sutisna, Dedi, Budi, Sony and Biyanto are thanked for the logistical support in Indonesia and for bringing us to the most remote parts of Merapi. Pierre-Yves Gillot (Université Paris-Sud, Orsay) and Simon Kelley (The Open University) kindly provided access to their K–Ar and Ar–Ar dating facilities, respectively. We appreciate the stimulating discussions about Merapi with Supriyati Andreastuti, Sutikno Bronto, Mary-Ann del Marmol, Alain Gourgaud, Chris Newhall, Lothar Schwarzkopf, Valentin Troll and Barry Voight, and the insightful reviews by Chris Newhall and Alain Gourgaud. Funding was provided primarily by the Deutsche Forschungsgemeinschaft (German Research Foundation). Financial support from the Natural Environment Research Council (UK), the Mineralogical Society of Great Britain and Ireland, and the Research Institute for the Environment, Physical Sciences and Applied Mathematics (EPSAM) at Keele University is also acknowledged.
Author information
Authors and Affiliations
Corresponding author
Additional information
Editorial responsibility: H. Delgado Granados
Electronic supplementary materials
Below is the link to the electronic supplementary material.
Supplementary Table 1
Merapi radiocarbon databasea (XLSX 56 kb)
Supplementary Table 2
Merapi whole-rock geochemistry database (XLSX 81 kb)
Rights and permissions
About this article
Cite this article
Gertisser, R., Charbonnier, S.J., Keller, J. et al. The geological evolution of Merapi volcano, Central Java, Indonesia. Bull Volcanol 74, 1213–1233 (2012). https://doi.org/10.1007/s00445-012-0591-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00445-012-0591-3
Keywords
- Merapi
- Stratigraphy
- Chronology
- Radiocarbon dating
- K–Ar dating
- Ar–Ar dating
- Merapi-type volcanism