Skip to main content
Log in

Dykes and structures of the NE rift of Tenerife, Canary Islands: a record of stabilisation and destabilisation of ocean island rift zones

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Many oceanic island rift zones are associated with lateral sector collapses, and several models have been proposed to explain this link. The North–East Rift Zone (NERZ) of Tenerife Island, Spain offers an opportunity to explore this relationship, as three successive collapses are located on both sides of the rift. We have carried out a systematic and detailed mapping campaign on the rift zone, including analysis of about 400 dykes. We recorded dyke morphology, thickness, composition, internal textural features and orientation to provide a catalogue of the characteristics of rift zone dykes. Dykes were intruded along the rift, but also radiate from several nodes along the rift and form en échelon sets along the walls of collapse scars. A striking characteristic of the dykes along the collapse scars is that they dip away from rift or embayment axes and are oblique to the collapse walls. This dyke pattern is consistent with the lateral spreading of the sectors long before the collapse events. The slump sides would create the necessary strike-slip movement to promote en échelon dyke patterns. The spreading flank would probably involve a basal decollement. Lateral flank spreading could have been generated by the intense intrusive activity along the rift but sectorial spreading in turn focused intrusive activity and allowed the development of deep intra-volcanic intrusive complexes. With continued magma supply, spreading caused temporary stabilisation of the rift by reducing slopes and relaxing stress. However, as magmatic intrusion persisted, a critical point was reached, beyond which further intrusion led to large-scale flank failure and sector collapse. During the early stages of growth, the rift could have been influenced by regional stress/strain fields and by pre-existing oceanic structures, but its later and mature development probably depended largely on the local volcanic and magmatic stress/strain fields that are effectively controlled by the rift zone growth, the intrusive complex development, the flank creep, the speed of flank deformation and the associated changes in topography. Using different approaches, a similar rift evolution has been proposed in volcanic oceanic islands elsewhere, showing that this model likely reflects a general and widespread process. This study, however, shows that the idea that dykes orient simply parallel to the rift or to the collapse scar walls is too simple; instead, a dynamic interplay between external factors (e.g. collapse, erosion) and internal forces (e.g. intrusions) is envisaged. This model thus provides a geological framework to understand the evolution of the NERZ and may help to predict developments in similar oceanic volcanoes elsewhere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acocella V, Neri M (2009) Dike propagation in volcanic edifices: overview and possible developments. Tectonophysics 471:67–77

    Article  Google Scholar 

  • Acocella V, Tibaldi A (2005) Dike propagation driven by volcano collapse: a general model tested at Stromboli, Italy. Geophys Res Lett 32:L08308. doi:10.1029/2004GL022248

    Article  Google Scholar 

  • Allmendinger RW, Cardozo NC, Fisher D (2012) Structural geology algorithms: vectors & tensors. Cambridge University Press, England, p 289

    Google Scholar 

  • Ancochea E, Fuster JM, Ibarrola E, Cendrero A, Coello J, Hernan F, Cantagrel JM, Jamond C (1990) Volcanic evolution of the island of Tenerife (Canary Islands) in the light of new K-Ar data. J Volc Geotherm Res 4:231–249

    Article  Google Scholar 

  • Anguita F, Hernán F (1975) A propagating fracture model versus a hot-spot origin for the Canary Islands. Earth Planet Sci Lett 27:11–19

    Article  Google Scholar 

  • Araña V, Ortiz R (1986) Marco geodinámico del volcanismo canario. An Física Vol Esp 82:202–231

    Google Scholar 

  • Araña V, Ortiz R (1991) The Canary Islands: tectonics, magmatism and geodynamic framework. In: Kampunzu AB, Lubala RT (eds) Magmatism in extensional structural settings—the Phanerozoic African Plate. Springer, New York, pp 209–249

    Chapter  Google Scholar 

  • Bachèlery P (1981) Le Piton de la Fournaise (Ile de la Réunion): étude volcanologique, structurale et pétrologique. Ph.D. thesis, Université Blaise Pascal, Clermont-Ferrand

  • Beck RH, Lehner P (1974) Oceans, new frontiers in exploration. Am Ass Petro Geol Bull 58:376–395

    Google Scholar 

  • Bonali FL, Corazzato C, Tibaldi A (2011) Identifying rift zones on volcanoes: an example from La Réunion island. Indian Ocean 73:347–366. doi:10.1007/s00445-010-0416-1

    Google Scholar 

  • Borgia A (1994) Dynamic basis of volcano spreading. J Geophys Res 99:17791–17804

    Article  Google Scholar 

  • Brooks BA, Foster J, Sandwell D, Wolfe CJ, Okubo P, Poland M, Myer D (2008) Magmatically triggered slow slip at Kilauea Volcano, Hawaii. Science 321(5893):1177

    Article  Google Scholar 

  • Canales JP, Dañobeitia JJ, Watts AB (2000) Wide-angle seismic constraints on the internal structure of Tenerife, Canary Islands. J Volcanol Geotherm Res 103:65–81

    Article  Google Scholar 

  • Carracedo JC (1994) The Canary Islands; an example of structural control on the growth of large oceanic-island volcanoes. J Volc Geotherm Res 60:225–241

    Article  Google Scholar 

  • Carracedo JC (1996) Morphological and structural evolution of the western Canary Islands: hotspot induced three-armed rifts or regional tectonic trends? J Volcanol Geotherm Res 72:151–162

    Article  Google Scholar 

  • Carracedo JC (1999) Growth, structure, instability and collapse of Canarian volcanoes and comparisons with Hawaiian volcanoes. J Volcanol Geotherm Res 94:1–19

    Article  Google Scholar 

  • Carracedo JC, Rodríguez Badiola E, Guillou H, Paterne M, Scaillet S, Pérez Torrado FJ, Paris R, Fra-Paleo U, Hansen A (2007) Eruptive and structural history of Teide Volcano and rift zones of Tenerife, Canary Islands. GSA Bull 19:1027–1051. doi:10.1130/B26087.1

    Article  Google Scholar 

  • Carracedo JC, Guillou H, Nomade S, Rodríguez-Badiola E, Pérez-Torrado FJ, Rodríguez-González A, Paris R, Troll VR, Wiesmaier S, Delcamp A, Fernández-Turiel JL (2010a) Evolution of ocean island rifts: the Northeast rift zone of Tenerife, Canary Islands. Geol Soc Am Bull B30119.1. doi:10.1130/B30119.1

  • Carracedo JC, Fernández-Turiel JL, Gimeno D, Guillou H, Klügel A, Krastel S, Paris R, Pérez-Torrado FJ, Rodríguez-Badiola E, Rodríguez-González A, Troll VR, Walter TR, Wiesmaier S (2010b) Comment on “The distribution of basaltic volcanism on Tenerife, Canary Islands: implications on the origin and dynamics of the rift systems” by A. Geyer and J. Martí. Tectonophysics 483:310–326

    Article  Google Scholar 

  • Carter A, van Wyk de Vries B, Kelfoun K, Bachèlery P, Briole P (2007) Pits, rifts and slumps: the summit structure of Piton de la Fournaise. Bull Volcanol 69:741–756. doi:10.1007/s00445-006-0103-4

    Article  Google Scholar 

  • Cayol V, Dieterich JH, Okamura AT, Miklius A (2000) High magma storage rates before the 1983 eruption of Kilauea, Hawaii. Science 288:2343. doi:10.1126/science.288.5475.2343

    Article  Google Scholar 

  • Clemente CS, Amorós EB, Crespo MG (2007) Dike intrusion under shear stress: effects on magnetic and vesicle fabrics in dikes from rift zones of Tenerife (Canary Islands). J Struct Geol 29:1931–1942

    Article  Google Scholar 

  • Deegan FM (2010) Processes of magma–crust interaction: insights from geochemistry and experimental petrology. Ph.D. thesis, Uppsala University, Sweden. Comprehensive summary available at http://uu.diva-portal.org/smash/get/diva2:358897/FULLTEXT01

  • Delaney P, Pollard DD (1981) Deformation of host rocks and flow of magma during growth of Minette dikes and breccia-bearing intrusions near Ship Rock, New Mexico. US Geol Surv Prof Pap 1202, 61 pp

  • Delcamp A (2010) Evolution of the NE rift-zone of Tenerife, Canary Islands: a multi-disciplinary approach. Ph.D. thesis, Trinity College Dublin, Ireland

  • Delcamp A, van Wyk de Vries B, Troll VR (2007) Endogeneous and exogeneous evolution of a cinder cone: example of Lemptégy cinder cone, Auvergne, France. EGU A-04948, Vienna, Austria

  • Delcamp A, Petronis MS, Troll VR, Carracedo JC, van Wyk de Vries B, Perez-Torrado FJ (2010) Vertical axis rotation of the upper portions of the north–east rift of Tenerife Island inferred from paleomagnetic data. Tectonophysics 492:40–59

    Article  Google Scholar 

  • Delcamp A, van Wyk de Vries B, James MR, Gailler LS, Lebas E (2011) Relationships between volcano gravitational spreading and magma intrusion. Bull Volcanol. doi:10.1007/s00445-011-0558-9

  • Dieterich JH (1988) Growth and persistence of Hawaiian volcanic rift zones. J Geophys Res 93:4258–4270

    Article  Google Scholar 

  • Duffield W, Stieltjes L, Varet J (1982) Huge landslide blocks in the growth of Piton de la Fournaise, La Reunion and Kilauea Volcano, Hawaii. J Volcanol Geotherm Res 12:147–160

    Article  Google Scholar 

  • Elsworth D, Day SJ (1999) Flank collapse triggered by intrusion: the Canarian and Cape Verde Archipelagoes. J Volcanol Geotherm Res 94:323–340

    Article  Google Scholar 

  • Elsworth D, Voight B (1996) Evaluation of volcano flank instability triggered by dyke intrusion. Geol Soc Spec Publ 110:45–53

    Article  Google Scholar 

  • Famin V, Michon L (2010) Volcano destabilization by magma injections in a detachment. Geology 38:219–222

    Article  Google Scholar 

  • Fiske R, Jackson ED (1972) Orientation and growth of Hawaiian volcanic rifts: the effect of regional structure and gravitational stresses. Proc R Soc Lond Ser A 329:299–326

    Article  Google Scholar 

  • Fukushima Y, Cayol V, Durand P (2005) Finding realistic dike models from interferometric synthetic aperture radar data: the February 2000 eruption of Piton de la Fournaise. J Geophys Res 110. doi:10.1029/2004JB003268

  • Fúster JM, Araña V, Brandle JL, Navarro JM, Alonso U, Aparicio A (1968) Geología y Volcanología de las Islas Canarias: Tenerife. Inst Lucas Mallada, CSIC, Madrid, pp 1–218

    Google Scholar 

  • Gailler LS, Lénat JF, Lambert M, Levieux G, Villeneuve N, Froger JL (2009) Gravity structure of Piton de la Fournaise volcano and inferred mass transfer during the 2007 crisis. J Volcanol Geotherm Res 184:31–48

    Article  Google Scholar 

  • Geyer A, Martí J (2010) The distribution of basaltic volcanism on Tenerife, Canary Islands: implications on the origin and dynamics of the rift systems. Tectonophysics 483:310–326

    Article  Google Scholar 

  • Gudmundsson A (2000) Dynamics of volcanic systems in Iceland: example of tectonism and volcanism at juxtaposed hot spot and mid-ocean ridge systems. Ann Rev Earth Planet Sci 28:107–140

    Article  Google Scholar 

  • Gudmundsson A (2002) Emplacement and arrest of sheets and dykes in central volcanoes. J Volcanol Geotherm Res 116:279–298

    Article  Google Scholar 

  • Gudmundsson A, Marinoni LB, Martí J (1999) Injection and arrest of dykes: implications for volcanic hazards. J Volcanol Geotherm Res 88:1–13

    Article  Google Scholar 

  • Guillou H, Carracedo JC, Paris R, Pérez Torrado FJ (2004) Implications for the early shield-stage evolution of Tenerife from K/Ar ages and magnetic stratigraphy. Earth Planet Sci Lett 222:599–614

    Article  Google Scholar 

  • Hildenbrand A, Gillot P-Y, Le Roy I (2004) Volcano-tectonic and geochemical evolution of an oceanic intra-plate volcano: Tahiti-Nui (French Polynesia). Earth Planet Sci Lett 217:349–365

    Article  Google Scholar 

  • Hoek JD (1995) Dyke propagation and arrest in Proterozoic tholeiitic dyke swarms. Vestfold Hills, East Antarctica. In: Baer G, Heimann A (eds) Physics and chemistry of dykes. Balkema, Rotterdam, pp 79–93

    Google Scholar 

  • Klügel A, Walter TR, Schwarz S, Geldmacher J (2005) Gravitational spreading causes en-echelon diking along a rift zone of Madeira Archipelago: an experimental approach and implications for magma transport. Bull Volcanol 68:37–46

    Article  Google Scholar 

  • Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Woolley AR, Zanettin B (1989) A classification of igneous rocks and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific, Oxford

    Google Scholar 

  • Longpré MA, Troll VR, Hansteen TH (2008) Upper mantle magma storage and transport under a Canarian shield-volcano, Teno, Tenerife (Spain). J Geophys Res 113:B08203. doi:10.1029/2007JB005422

    Article  Google Scholar 

  • Márquez A, López I, Herrera R, Martín-González F, Izquierdo T, Carreño F (2008) Spreading and potential instability of Teide volcano, Tenerife, Canary Islands. Geophys Res Lett 35:L05305. doi:10.1029/2007GL032625

    Article  Google Scholar 

  • Martí J, Gudmundsson A (2000) The Las Cañadas caldera (Tenerife, Canary Islands): an overlapping collapse caldera generated by magma-chamber migration. J Volcanol Geotherm Res 103:161–173

    Article  Google Scholar 

  • Martí J, Mitjavila J, Araña V (1994) Stratigraphy, structure and geochronology of the Las Cañadas caldera (Tenerife, Canary Islands). Geol Mag 131:715–727

    Article  Google Scholar 

  • Martí J, Hurlimann M, Ablay GJ, Gudmundsson A (1997) Vertical and lateral collapses on Tenerife (Canary Islands) and other volcanic ocean islands. Geology 25:879–882

    Article  Google Scholar 

  • Mathieu L, van Wyk de Vries B (2009) Edifice and substrata deformation induced by intrusive complexes and gravitational loading in the Mull volcano (Scotland). Bull Volcanol 71:1133–1148

    Article  Google Scholar 

  • McFarlane DJ, Ridley WI (1968) An interpretation of gravity data for Tenerife, Canary Islands. Earth Planet Sci Lett 4:481–486

    Article  Google Scholar 

  • McGuire WJ, Pullen AD (1989) Location and orientation of eruptive fissures and feeder dykes at Mount Etna; influence of gravitational and regional stress regimes. J Volcanol Geotherm Res 38:325–344

    Article  Google Scholar 

  • Merle O, Lénat JF (2003) Hybrid collapse mechanism at Piton de la Fournaise (Réunion Island, Indian Ocean). J Geophys Res 108:2166

    Article  Google Scholar 

  • Merle O, Mairine P, Michon L, Bachèlery P, Smietana M (2010) Calderas, landslides and paleo-canyons on Piton de la Fournaise volcano (La Réunion Island, Indian Ocean). J Volcanol Geotherm Res 189:131–142

    Article  Google Scholar 

  • Oehler JF, van Wyk de Vries B, Labazuy P (2005) Landslides and spreading of oceanic hot-spot and arc shield volcanoes on Low Strength Layers (LSLs): an analogue modeling approach. J Volcanol Geotherm Res 144:169–189

    Article  Google Scholar 

  • Porreca M, Acocella V, Massimi E, Mattei M, Funiciello R, De Benedetti AA (2006) Geometric and kinematic features of the dike complex at Mt. Somma, Vesuvio (Italy). Earth Planet Sci Lett 245:389–407

    Article  Google Scholar 

  • Robertson AHF, Stillman CJ (1979) Submarine volcanic and associated sedimentary rocks of the Fuerteventura Basal Complex, Canary Islands. Geol Mag 116:203–214

    Article  Google Scholar 

  • Rodríguez-Losada JA, Hernández-Gutiérrez LE, Olalla C, Perucho A, Serrano A, Eff-Darwich A (2009) Geomechanical parameters of intact rocks and rock masses from the Canary Islands: implications on their flank stability. J Volcanol Geotherm Res 182:67–75

    Article  Google Scholar 

  • Swanson DA, Duffield WA, Fiske RS (1976) Displacement of the south flank of Kilauea Volcano: the result of forceful intrusion of magma into the rift zone. US Geol Surv Prof Pap 963:39

    Google Scholar 

  • Tibaldi A (2001) Multiple sector collapses at Stromboli volcano, Italy: how they work. Bull Volcanol 63:112–125

    Article  Google Scholar 

  • Tibaldi A (2003) Influence of cone morphology on dykes, Stromboli, Italy. J Volcanol Geotherm Res 126:79–95

    Article  Google Scholar 

  • van Bemmelen RW (1949) The geology of Indonesia: general geology of Indonesia and adjacent archipelagos. Gov. Print. Off, The Hague

    Google Scholar 

  • van Wyk de Vries B, Matela R (1998) Styles of volcano-induced deformation: numerical models of substratum flexure, spreading and extrusion. J Volcanol Geotherm Res 81:1–18

  • van Wyk de Vries B, Cecchi E, Robineau B, Merle O, Batchèlery P (2001) Factors governing the volcano-tectonic evolution of La Réunion Island: a morphological, structural and laboratory modelling approach. J Conf Abst 6:800

    Google Scholar 

  • Walker GPL (1992) Coherent intrusion complexes in large basaltic volcanoes; a new structural model. Essays on magmas and other earth fluids; a volume in appreciation of Harris PG, Cox KG, Baker PE. Elsevier 50:41–54

    Google Scholar 

  • Walter TR, Troll VR (2003) Experiments on rift zone evolution in unstable volcanic edifices. J Volcanol Geotherm Res 127:107–120

    Article  Google Scholar 

  • Walter TR, Troll VR, Cailleau B, Belousov A, Schmincke HU, Bogaard P, Amelung F (2005) Rift zone reorganization through flank instability on ocean island volcanoes: Tenerife, Canary Islands. Bull Volcanol 67:281–291

    Article  Google Scholar 

  • Walter TR, Klügel A, Münn S (2006) Gravitational spreading and formation of new rift zones on overlapping volcanoes. Terra Nova 18:26–33

    Article  Google Scholar 

  • Watts AB (1994) Crustal structure, gravity anomalies and flexure of the lithosphere in the vicinity of the Canary Islands. Geophys Int 119:648–666

    Article  Google Scholar 

  • Watts AB, Masson DG (1995) A giant landslide on the north flank of Tenerife, Canary Islands. J Geophys Res 100:24487–24498

    Article  Google Scholar 

Download references

Acknowledgements

L. Mathieu and S. Wiesmaier are thanked for their help in the field. R. Paris provided us with the DEM of Tenerife. D. Chew, A. Tibaldi, V. Acocella, P. Einarsson and two anonymous reviewers are greatly thanked for their comments and suggestions on earlier versions of the manuscript. This work was jointly founded by a National Geographic Society Grant in aid of research award 8106-06 (Petronis and Troll), by an Irish Research Council for Sciences, Engineering and Technology Grant (Delcamp and Troll) and by a Spanish Plan Nacional de I + D + I research project CGL2008-02842/BTE (Carracedo and Pérez-Torrado).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Delcamp.

Additional information

Editorial responsibility: M. Manga

Electronic supplementary materials

Below is the link to the electronic supplementary material.

ESM 1

(DOC 23.8 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delcamp, A., Troll, V.R., van Wyk de Vries, B. et al. Dykes and structures of the NE rift of Tenerife, Canary Islands: a record of stabilisation and destabilisation of ocean island rift zones. Bull Volcanol 74, 963–980 (2012). https://doi.org/10.1007/s00445-012-0577-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-012-0577-1

Keywords

Navigation